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1. Introduction

The geometric Langlands correspondence has recently been given an elegant physical in-

terpretation by Kapustin and Witten in their seminal paper [1] — by considering a cer-

tain twisted N = 4 supersymmetric Yang-Mills theory in four-dimensions compactified

on a complex Riemann surface C, the geometric Langlands correspondence associated to

a holomorphic G-bundle on C can be shown to arise naturally from an electric-magnetic

duality in four-dimensions. To be more specific, it can be shown [1] that one can, for

example, relate various mathematical objects and concepts of the correspondence such as

Hecke eigensheaves and the action of the Hecke operator, to the boundaries and the ’t

Hooft line operator of the underlying four-dimensional quantum gauge theory. Through

a four-dimensional electric-magnetic duality, or a mirror symmetry of the resulting two-

dimensional topological sigma-model at low-energies, one can then map the relevant objects

on either side of the correspondence to their corresponding partners on the other side, thus

furnishing a purely physical interpretation of the geometric Langlands conjecture.

The work of Kapustin and Witten centres around a gauge-theoretic interpretation of

the geometric Langlands correspondence. However, it does not shed any light on the utility

of two-dimensional axiomatic conformal field theory in the geometric Langlands program,

which, incidentally, is ubiquitous in the mathematical literature on the subject [2 – 6]. This

seems rather puzzling. Afterall, the various axiomatic definitions of a conformal field theory

that fill the mathematical literature, are based on established physical concepts, and it is

therefore natural to expect that in any physical interpretation of the geometric Langlands

correspondence, a two-dimensional conformal field theory of some sort will be involved. It

will certainly be illuminating for the geometric Langlands program as a whole, if one can

deduce the conformal field-theoretic approach developed in the mathematical literature,

from the gauge-theoretic approach of Kapustin and Witten, or vice-versa.

Note that the gauge-theoretic approach to the program necessarily involves a certain

two-dimensional quantum field theory in its formulation, a generalised topological sigma-

model to be exact. This strongly suggests that perhaps a good starting point towards

elucidating the connection between the conformal field-theoretic and gauge-theoretic ap-

proaches, would be to explore other physical models in two-dimensions which will enable us

to make direct contact with the central results of the correspondence derived from the ax-

iomatic conformal field-theoretic approach. The work in this paper represents our modest

attempt towards this aim.

The key ingredients in the conformal field-theoretic approach to the geometric Lang-

lands correspondence are, affine Lie algebras at the critical level without stress tensors [7],

and W-algebras (defined by a Drinfeld-Sokolov or DS reduction procedure) associated to

the affine versions of the Langlands dual of the Lie algebras [7, 8]. The duality between

classical W-algebras which underlies the conformal field-theoretic approach to the corre-

spondence, is just an isomorphism between the Poisson algebra generated by the centre

z(ĝ) of the completed universal enveloping algebra of the affine Lie algebra ĝ at the critical

level, where g is the simple Lie algebra of the group G, and the classical W-algebra asso-

ciated to the affine Lie algebra Lĝ in the limit of large level k′ - W∞(Lĝ), where Lg is the
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simple Lie algebra of the Langlands dual group LG; in other words, a geometric Langlands

correspondence for G simply originates from an isomorphism z(ĝ) ≃ W∞(Lĝ) of Poisson

algebras [6, 9]. This statement is accompanied by a relation (k+h∨)r∨ = (k′ + Lh
∨
)−1 be-

tween the generic levels k and k′ of ĝ and Lĝ respectively (where r∨ is the lacing number of

g, and h∨ and Lh
∨

are the dual Coxeter numbers of g and Lg respectively), which defines a

“quantum” generalisation of the above isomorphism of classical W-algebras [6, 9], whereby

the k = −h∨ and k′ = ∞ limits just correspond to the classical isomorphism mentioned

herein that we shall be discussing in this paper.

A strong hint that one should be considering for our purpose a two-dimensional twisted

(0, 2) sigma-model on a flag manifold, stems from our recent understanding of the role

sheaves of “Chiral Differential Operators” (or CDO’s) play in the description of its holo-

morphic chiral algebra [10], and from the fact that global sections of CDO’s on a flag man-

ifold furnish a module of an affine Lie algebra at the critical level [10, 11]. On the other

hand, since Toda field theories lead to free-field realisations of the W-algebras defined by

the DS reduction scheme mentioned above (see section 6 of [12], and the references therein),

and since the Toda theory can be obtained as a gauge-invariant content of a certain gauged

WZW theory [13, 14], it ought to be true that by relating a relevant aspect of the sigma-

model on a flag manifold to a gauged WZW model, one should be able to uncover a physical

manifestation of the isomorphism of (classical) W-algebras. Indeed, we shall show that an

equivalence - at the level of the holomorphic chiral algebra - between a bosonic string on a

smooth flag manifold G/B and a B-gauged WZW model on G, where G = SL(N,C), will

necessarily imply an isomorphism of classical W-algebras and the relation (k + h∨)r∨ =

(k′+Lh
∨
)−1 which underlie a geometric Langlands correspondence forG = SL(N,C). Since

a string on a group manifold G can be expressed as a WZW model on G [15], it would mean

that an equivalence, at the level of the holomorphic chiral algebra, between a bosonic string

on a smooth coset manifold G/B and a B-gauged version of itself on G - a statement which

stems from the ubiquitous notion that one can always physically interpret a geometrical

symmetry of the target space as a gauge symmetry in the worldsheet theory - will imply

a geometric Langlands correspondence for G = SL(N,C). This furnishes an alternative

physical interpretation of the geometric Langlands correspondence for G = SL(N,C) to

that of an electric-magnetic duality of four-dimensional gauge theory. Likewise, the Hecke

operators and Hecke eigensheaves will also lend themselves to different physical interpreta-

tions - instead of line operators and branes in a two-dimensional topological sigma-model,

they are, in our case, associated to the correlation functions of local operators that span

the holomorphic chiral algebra of a quasi-topological sigma-model without boundaries. Our

results therefore open up a new way of looking at the correspondence, thus providing the

prospect of novel mathematical and physical insights for the program in general.

A brief summary and plan of the paper. We shall now give a brief summary and

plan of the paper.

In section 2, we shall show that an equivalence - at the level of the holomorphic chiral

algebra - between a bosonic string on G/B and a B-gauged version of itself on G, will

necessarily imply a geometric Langlands correspondence forG = SL(N,C), whereN = 2, 3.
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We begin by considering the twisted (0, 2) sigma-model on a complex flag manifold defined

by the coset space SL(N)/B where N = 2, 3, and B is a Borel subgroup containing upper

triangular matrices of SL(N).1 We then explain how a subspace of the global sections

of the sheaf of CDO’s, describing the holomorphic chiral subalgebra of the sigma-model

on SL(N)/B, will furnish a module of an affine SL(N) algebra at the critical level. This

in turn will allow us to show, using the results in appendix A, that the classical centre

of the completed universal enveloping algebra of the affine SL(N) algebra at the critical

level - z(ŝlN ), is spanned by the Laurent modes of certain local fields of spins 2 and 3 in

the classical holomorphic chiral algebra of the purely bosonic sector of the sigma-model on

SL(N)/B. Next, we turn to a dual description of this classical, holomorphic chiral algebra

in the purely bosonic sector (or bosonic string part) of the sigma-model on SL(N)/B - the

classical, holomorphic BRST-cohomology (or chiral algebra) of a B-gauged WZW model

on SL(N). One can then show that an equivalence between these classical, holomorphic

chiral algebras will necessarily imply an isomorphism z(ĝ) ≃ W∞(Lĝ) of Poisson algebras

and the level relation (k + h∨)r∨ = (k′ + Lh
∨
)−1 that underlie a geometric Langlands

correspondence for G = SL(N), where N = 2, 3.

In section 3, we will generalise our arguments in section 2 to arbitrary N . To this end,

we will first discuss the twisted sigma-model on any complex flag manifold SL(N)/B, and

the global sections of the sheaf of CDO’s on SL(N)/B associated to the chiral algebra of

the purely bosonic sector of the sigma-model that will furnish a module of an affine SL(N)

algebra at the critical level. We will then proceed to discuss the construction of higher-spin

analogs of the Segal-Sugawara tensor from the affine SL(N) algebra, and show that these

fields of higher spins which are in the classical holomorphic chiral algebra of the purely

bosonic sector of the sigma-model on SL(N)/B, will have Laurent modes that span the

classical centre z(ŝlN ) of the completed universal enveloping algebra of the affine SL(N)

algebra at critical level. Next, we will outline the mathematical Drinfeld-Sokolov reduction

procedure in [7] of defining Wk′(ĝ), a W-algebra associated to ĝ at level k′, via a Hecke

algebra. Thereafter, we will show that the holomorphic sector of the BRST-cohomology of

the B-gauged WZW model on SL(N) physically realises, in all generality, this particular

Hecke algebra, i.e., the holomorphic BRST-cohomology of the B-gauged WZW model on

SL(N) always consist of local operators which generate a Wk′(ŝlN ) OPE algebra. Hence, its

classical, holomorphic BRST-cohomology will always consist of local fields with Laurent

modes that generate a classical W∞(ŝlN )-algebra. By specialising our analysis (in the

classical limit) to N = 2, 3, we will make contact with the results in section 2. One can now

extend the arguments in section 2 forN = 2, 3 to any N ; since g = slN = Lg, an equivalence

- at the level of the classical holomorphic chiral algebra - between the purely bosonic sector

(or bosonic string part) of the sigma-model on SL(N)/B and the B-gauged WZW model

on SL(N), will necessarily imply an isomorphism z(ĝ) ≃ W∞(Lĝ) of Poisson algebras

and the level relation (k + h∨)r∨ = (k′ + Lh
∨
)−1 which underlie a geometric Langlands

correspondence for G = SL(N). That is, an equivalence - at the level of the holomorphic

chiral algebra - between a bosonic string on G/B and a B-gauged version of itself on G,

1Here and henceforth, in writing SL(N), we really mean SL(N,C).
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will necessarily imply a geometric Langlands correspondence for any G = SL(N,C).

In section 4, we shall derive, via the isomorphism of classical W-algebras discussed

in section 3, a correspondence between flat holomorphic LG-bundles on the worldsheet

Σ and Hecke eigensheaves on the moduli space BunG of holomorphic G-bundles on Σ,

where G = SL(N). Lastly, we shall physically interpret the Hecke eigensheaves and Hecke

operators of the geometric Langlands program in terms of the correlation functions of purely

bosonic local operators in the holomorphic chiral algebra of the twisted (0, 2) sigma-model

on the complex flag manifold SL(N)/B.

In appendix A, we will review the two-dimensional twisted (0, 2) sigma-model consid-

ered in [10], and explain its relation to the theory of CDO’s. In particular, we will describe

how the relevant physical features of the sigma-model and its holomorphic chiral algebra,

can be interpreted in terms of the sheaf of CDO’s and its Cech-cohomology.

Relation to the gauge-theoretic approach. Though we have not made any explicit

connections to the gauge-theoretic approach of Kapustin and Witten yet, we hope to be

able to address this important issue in a later publication, perhaps with the insights gained

in this paper.

A “quantum” geometric Langlands correspondence. A forthcoming paper will

investigate the interpretation of a “quantum” geometric Langlands correspondence for

G = SL(N) in a similar physical context, albeit with fluxes of the sigma-model moduli

turned on, such that the level of the affine SL(N) algebra with a module furnished by the

global sections of the sheaf CDO’s on X = SL(N)/B, can be deformed away from the

critical value, whereby a “quantum” deformation of our present setup can be defined.

2. An equivalence of classical holomorphic chiral algebras and the geo-

metric Langlands correspondence for G = SL(2) and SL(3)

In this section, we shall study explicit examples of the twisted sigma-model on the complex

flag manifolds SL(2)/B and SL(3)/B, and the corresponding sheaves of CDO’s that describe

its holomorphic chiral algebra. We shall also study the holomorphic BRST-cohomology of

a B-gauged WZW model on SL(2) and SL(3). We will then show that an equivalence

- at the level of the holomorphic chiral algebra - between a bosonic string on SL(N)/B

and a B-gauged version of itself on SL(N), where N = 2, 3, will imply an isomorphism of

classical W-algebras and the relation (k+ h∨)r∨ = (k′ + h∨)−1 which underlie a geometric

Langlands correspondence for G = SL(2) and SL(3) respectively.

2.1 The twisted sigma-model on SL(2)/B and its classical holomorphic chiral

algebra

Let us take X = SL(2)/B. In other words, since SL(2)/B ∼= CP1, we will be exploring and

analysing the chiral algebra A of operators in the twisted (0, 2) model on CP1. To this

end, we will work locally on the worldsheet Σ, choosing a local complex parameter z.

– 5 –
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Now, CP1 can be regarded as the complex γ-plane plus a point at infinity. Thus, we

can cover it by two open sets, U1 and U2, where U1 is the complex γ-plane, and U2 is the

complex γ̃-plane, where γ̃ = 1/γ.

Since U1 is isomorphic to C, the sheaf of CDO’s in U1 can be described by a single free

βγ system with action

I =
1

2π

∫
|d2z| β∂z̄γ. (2.1)

Here β and γ, are fields of dimension (1, 0) and (0, 0) respectively. They obey the

usual free-field OPE’s; there are no singularities in the operator products β(z) · β(z′) and

γ(z) · γ(z′), while

β(z)γ(z′) ∼ − 1

z − z′
. (2.2)

Similarly, the sheaf of CDO’s in U2 is described by a single free β̃γ̃ system with action

I =
1

2π

∫
|d2z| β̃∂z̄ γ̃, (2.3)

where the fields β̃, and γ̃ obey the same OPE’s as β and γ. In other words, the non-trivial

OPE’s are given by

β̃(z)γ̃(z′) ∼ − 1

z − z′
. (2.4)

In order to describe a globally-defined sheaf of CDO’s, one will need to glue the free

conformal field theories with actions (2.1) and (2.3) in the overlap region U1 ∩ U2. To

do so, one must use the admissible automorphisms of the free conformal field theories

defined in (A.29)–(A.30) to glue the free-fields together. In the case of X = CP1, the

automorphisms will be given by

γ̃ =
1

γ
, (2.5)

β̃ = −γ2β + 2∂zγ. (2.6)

As there is no obstruction to this gluing in the twisted sigma-model on any flag manifold

SL(N)/B [11], a sheaf of CDO’s can be globally-defined on the CP
1 target-space.

Global sections of the Sheaf of CDO’s on X = SL(2)/B. Recall that for a gen-

eral manifold X of complex dimension n, the chiral algebra A will be given by A =⊕gR=n
gR=0 H

gR(X, Ôch
X ) as a vector space. Since CP

1 has complex dimension 1, we will have,

for X = CP
1, the relation A =

⊕gR=1
gR=0H

gR(CP
1, Ôch

P1). Thus, in order to understand the

chiral algebra of the twisted sigma-model, one needs only to study the global sections of

the sheaf Ôch
P1 , and its first Cech cohomology H1(CP1, Ôch

P1). However, for our purpose, it

would suffice to study just the purely bosonic sector of A - from our Q+-Cech cohomology

dictionary, this translates to studying the global sections H0(CP1, Ôch
P1) only.

At dimension 0, the space of global sections H0(CP
1, Ôch

P1;0) must be spanned by func-

tions of arbitrary degree in γ. Since all regular, holomorphic functions on a compact

Riemann surface such as CP1 must be constants, we find that the space of global sections

at dimension 0, given by H0(CP1, Ôch
P1;0), is one-dimensional and generated by 1.

– 6 –
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Let us now ascertain the space H0(CP1, Ôch
P1;1) of global sections of dimension 1. In or-

der to get a global section of Ôch
P1 of dimension 1, we can act on a global section of Ôch

P1 of di-

mension 0 with the partial derivative ∂z. Since ∂z1 = 0, this prescription will not apply here.

One could also consider operators of the form f(γ)∂zγ, where f(γ) is a holomorphic

function of γ. However, there are no such global sections either - such an operator, by

virtue of the way it transforms purely geometrically under (2.5), would correspond to a

section of Ω1(CP1), the sheaf of holomorphic differential forms f(γ)dγ on CP1, and from

the classical result H0(CP
1,Ω1(CP

1)) = 0, which continues to hold in the quantum theory,

we see that f(γ)∂zγ cannot be a dimension 1 global section of Ôch
P1.

Other possibilities include operators which are linear in β. In fact, from the auto-

morphism relation of (2.6), we find an immediate example as the l.h.s. , β̃, is by definition

regular in U2, while the r.h.s. , being polynomial in γ, ∂zγ and β, is manifestly regular in

U1. Their being equal means that they represent a dimension 1 global section of Ôch
P1 that

we will call J+:

J+ = −γ2β + 2∂zγ = β̃. (2.7)

The construction is completely symmetric between U1 and U2, with γ ↔ γ̃, β ↔ β̃, so a

reciprocal formula gives another dimension 1 global section J−:

J− = β = −γ̃2β̃ + 2∂z γ̃. (2.8)

Hence, J+ and J− give us two dimension 1 global sections of the sheaf Ôch
P1 . Since these are

global sections of a sheaf of chiral vertex operators, we can construct more of them from

their OPE’s. There are no singularities in the J+ · J+ or J− · J− operator products, but

J+J− ∼ 2J3

z − z′
− 2

(z − z′)2
, (2.9)

where J3 is another global section of dimension 1 given by

J3 = −γβ. (2.10)

(Note that normal-ordering is again understood for all operators above and below).

Notice that since {J+, J−, J3} are ψī-independent, they are purely bosonic operators

that belong in H0(CP1, Ôch
P1;1). One can verify that they satisfy the following closed OPE

algebra:

J3(z)J+(z′) ∼ +J+(z′)

z − z′
, (2.11)

J3(z)J−(z′) ∼ −J−(z′)

z − z′
, (2.12)

J3(z)J3(z
′) ∼ − 1

(z − z′)2
, (2.13)

J+(z)J−(z′) ∼ 2J3

z − z′
− 2

(z − z′)2
. (2.14)

From the above OPE algebra, we learn that the J ’s furnish a module of an affine algebra

of SL(2) at level −2, which here, as noted in [11], appears in the Wakimoto free-field rep-

resentation. Indeed, these chiral vertex operators are holomorphic in z, which means that

– 7 –
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one can expand them in a Laurent series that allows an affinisation of the SL(2) algebra

generated by their resulting zero modes. Thus, the space of global sections of Ôch
P1 furnishes

a module of an affine algebra of SL(2) at level −2.2 case The space of these operators obeys

all the physical axioms of a chiral algebra except for reparameterisation invariance on the

z-plane or worldsheet Σ. We will substantiate this last statement momentarily by showing

that the holomorphic stress tensor fails to exist in the Q+-cohomology at the quantum

level. As we shall see shortly, this observation will be crucial to our results in this section.

The Segal-Sugawara tensor and the classical holomorphic chiral algebra. Re-

call from section 2.6 and our Q+-Cech cohomology dictionary, that there will be a ψī-

independent stress tensor operator T (z) in the quantum Q+-cohomology of the underlying

twisted sigma-model on CP1, if and only if the corresponding T̂ (z) operator of the free βγ

system belongs in H0(CP
1, Ôch

P1) - the space of global sections of Ôch
P1. Let’s look at this

more closely.

Now, note that for X = CP1, we have

T̂ (z) = − : β∂zγ : (z). (2.15)

where the above operators are defined and regular in U1. Similarly, we also have

˜̂
T (z) = − : β̃∂z γ̃ : (z). (2.16)

where the above operators are defined and regular in U2. By substituting the automorphism

relations (2.5)–(2.6) into (2.16), a small computation shows that in U1 ∩ U2, we have

˜̂
T (z) − T̂ (z) = ∂z

(
∂zγ

γ

)
. (2.17)

where an operator that is a global section of Ôch
P1 must agree in U1 ∩ U2.

The only way to consistently modify T̂ and
˜̂
T so as to agree on U1 ∩ U2, is to shift

them by a multiple of the term (∂2
zγ)/γ and (∂zγ)

2/γ2. However, any linear sum of these

two terms has a pole at both γ = 0 and γ̃ = 0. Thus, it cannot be used to redefine T̂ or
˜̂
T

(which has to be regular in U1 or U2 respectively). Therefore, we conclude that T̂ (z) does

not belong in H0(CP1, Ôch
P1). This means that T (z) does not exist in the Q+-cohomology

of the underlying twisted sigma-model on CP1 at the quantum level.

This last statement is in perfect agreement with the physical picture presented in

section 2.3, which states that since c1(CP
1) 6= 0, there are now one-loop corrections to the

action of Q+, such that the T (z) is no longer annihilated by Q+. This just corresponds

to the mathematical fact that the sheaf Ôch
X of CDO on X has a structure of a conformal

2Note that one can consistently introduce appropriate fluxes to deform the level away from −2 - recall

from our discussion in appendix A that the Eij = ∂iBj term in (A.30) is related to the fluxes that correspond

to the moduli of the chiral algebra, and since this term will determine the level k of the affine SL(2) algebra

via the term −k∂zγ of β̃, (which is set to k = −2 in the current undeformed case), turning on the relevant

fluxes will deform k away from −2. Henceforth, whenever we consider k 6= −2, we really mean turning on

fluxes in this manner.
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vertex algebra if and only if the conformal anomaly measured by c1(X) vanishes. Note also

that (2.17) is a counterpart in Cech cohomology to the sigma-model relation

[
Q+, Tzz

]
= ∂z

(
Rij̄∂zφ

iψj̄
)
. (2.18)

Since φi corresponds to γi, we see from (2.18) that the sigma-model operator Rij̄ψ
j̄ must

correspond to 1/γ. Hence, we have an interpretation of the one-loop beta function (which

is proportional to Rij̄) in terms of holomorphic data. This has been emphasised in [10] as

a novel way to view the one-loop beta function from a purely mathematical viewpoint.

The absence of T (z) in the quantum holomorphic chiral algebra of the twisted sigma-

model on CP1, can also be observed from a different but crucial viewpoint. To this end,

note that for any affine algebra ĝ at level k 6= −h∨, where h∨ is the dual Coxeter number

of the Lie algebra g, one can construct the corresponding stress tensor out of the currents

of ĝ via a Segal-Sugawara construction [16]. In the present case of an affine SL(2) algebra,

the stress tensor can be constructed as

T (z) =
: (J+J− + J2

3 )(z) :

k + 2
, (2.19)

where because g = sl2, h
∨ = 2. As required, for every k 6= −2, the modes of the Laurent

expansion of T (z) will span a Virasoro algebra. In particular, T (z) will generate holomor-

phic reparametrisations of the coordinates on the worldsheet Σ. Notice that this definition

of T (z) in (2.19) is ill-defined when k = −2. Nevertheless, one can always associate T (z)

with an operator S(z) that is well-defined at any finite level, such that

S(z) = (k + 2)T (z) (2.20)

is known as the Segal-Sugawara tensor. It is given by

S(z) = : (J+J− + J2
3 )(z) :. (2.21)

From (2.20), we see that S(z) generates, in its OPE’s with other field operators, (k+2) times

the transformations usually generated by the stress tensor T (z). Therefore, at the level

k = −2, S(z) generates no transformations at all - its OPE’s with all other field operators

are trivial. This is equivalent to saying that the holomorphic stress tensor does not exist

at all, since S(z), which is the only well-defined operator at this level that could possibly

generate the transformation of fields under an arbitrary holomorphic reparametrisation of

the worldsheet coordinates on Σ, acts by zero.

Note that T (z) will fail to exist in the chiral algebra and therefore S(z) will act by zero,

only at the quantum level, i.e., T (z) and S(z) still exist as local fields of spin two in the

Q+-cohomology of the sigma-model at the classical level. To substantiate this statement,

first recall from section 2.3 that [Q+, T (z)] = 0 classically in the absence of quantum

corrections to the action of Q+. Next, note that the integer 2 in the factor (k + 2) of the

expression S(z) in (2.20), is due to a shift by h∨ = 2 in the level k because of quantum

renormalisation effects [17], i.e., the classical expression of S(z) for a general level k can

actually be written as

S(z) = kT (z), (2.22)
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and therefore, one will also have [Q+, S(z)] = 0 in the classical theory. Moreover, since in

our case, we actually have S(z) = −2T (z) in the classical theory, it will also be true that

under quantum corrections of the action of Q+, we will have

[
Q+, Szz

]
= −2∂z

(
Rij̄∂zφ

iψj̄
)
. (2.23)

This corresponds, in the Cech cohomology picture, to the expression

˜̂
S(z) − Ŝ(z) = −2∂z

(
∂zγ

γ

)
, (2.24)

which means that Ŝ(z), the Cech cohomology counterpart to the S(z) operator, fails to

be in H0(CP
1, Ôch

P1). This is again consistent with the fact that S(z) does not belong in

the quantum chiral algebra of the sigma-model, but rather, S(z) belongs in its classical

chiral algebra. In other words, one can always represent S(z) by a classical c-number. This

point will be important when we discuss how one can define Hecke eigensheaves that will

correspond to flat LG-bundles on a Riemann surface Σ in our physical interpretation of

the geometric Langlands correspondence for G = SL(2).

The fact that S(z) fails to correspond to any element in H0(CP
1, Ôch

P1) means that

it will act trivially in any OPE with other field operators. This in turn implies that its

Laurent modes will commute with the Laurent modes of any other existing operator; in

particular, the Laurent modes of S(z) will commute with the Laurent modes of the currents

J+(z), J−(z) and J3(z) - in other words, the Laurent modes of S(z) will generate the centre

z(ŝl2) of the completed universal enveloping algebra of the affine SL(2) algebra ŝl2 at the

critical level k = −2 (spanned by the Laurent modes of J+(z), J−(z) and J3(z) in the

quantum chiral algebra of the twisted sigma-model on SL(2)/B).3 Last but not least,

notice that S(z) is also ψj̄-independent and must therefore be purely bosonic in nature.

In other words, S(z) exist only in the classical holomorphic chiral algebra of the purely

bosonic (or ψj̄-independent) sector of the twisted sigma-model.

Note that since S(z) is a classical field, z(ŝl2), which is generated by its Laurent modes,

must also be classical in nature. This statement can be further substantiated as follows.

Firstly, note that since S(z) is holomorphic in z and is of conformal weight two, one can

expand it in terms of a Laurent expansion as

S(z) =
∑

n∈Z

Ŝnz
−n−2. (2.25)

Let us begin with the general case of k 6= −h∨ for any affine algebra ĝ, whereby a quantum

definition of S(z) exists, so that the Ŝn modes of its Laurent expansion can be related to

the Ja
n modes of the currents of ĝ through the quantum commutator relations

[Ŝn, J
a
m] = −(k + h∨)mJa

n+m, (2.26)

[Ŝn, Ŝm] = (k + h∨)

(
(n−m)Ŝn+m +

k

12
dim g

(
n3 − n

)
δn,−m

)
, (2.27)

3Recall that S(z) is constructed out of the currents of the affine SL(2) algebra by using the invariant

tensors of the corresponding Lie algebra usually employed to define higher-order Casimir invariants. Con-

sequently, its Laurent modes will span not the centre of the affine algebra, but rather the centre of the

completed universal enveloping algebra of the affine algebra.
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where a = 1, 2, . . . ,dimg. If we now let k = −h∨ and g = sl2, we will have [Ŝn, J
a
m] =

[Ŝn, Ŝm] = 0. Hence, one can define simultaneous eigenstates of the Ŝn and Ja
n mode

operators. In particular, one would be able to properly define a general state Ψ =

Ŝ−lŜ−q . . . Ŝ−p|0, α〉, where |0, α〉 is a vacuum state associated to a representation of sl2

labelled by α, such that Ja
0 |0, α〉 = αa|0, α〉. However, note that any Ψ will correspond

to a null-state, i.e., Ψ decouples from the real, physical Hilbert space of quantum states

spanned by the representations of sl2 [18]. This means that the Ŝm’s which generate z(ŝl2)

cannot exist as quantum mode operators. Hence, z(ŝl2) must be a classical algebra.

A classical Virasoro algebra. Since we now understand that S(z) must be a holomor-

phic classical field at k = −2, let us rewrite, for interpretive clarity, the Laurent expansion

of S(z) as

S(z) =
∑

n∈Z

Snz
−n−2, (2.28)

so as to differentiate the classical modes of expansion Sn from their quantum counterpart

Ŝn in (2.25). Unlike the Ŝn’s which obey the quantum commutator relations in (2.27) for an

arbitrary level k 6= −2, the Sn’s, being the modes of a Laurent expansion of a classical field,

will instead obey Poisson bracket relations that define a certain classical algebra at k = −2.

Based on our arguments thus far, we see that the quantum version of S(z) as expressed

in (2.25), must reduce to its classical counterpart as expressed in (2.28), when k → −2. In

other words, one can see that by taking (k + 2) → 0, we are going to the classical limit

of this operator. This is analogous to taking the limit ~ → 0 in any quantum mechanical

theory so as to obtain its classical counterpart. In fact, by identifying (k+h∨) or in this case

(k+ 2) with i~, and by noting that one must make the replacement from Possion brackets

to commutators via {Sn, Sm}P.B. → 1
i~[Ŝn, Ŝm] in quantising the Sn’s into operators, we

can ascertain the classical algebra generated by the Sn’s from (2.27) as

{Sn, Sm}P.B. = (n−m)Sn+m − 6

12

(
n3 − n

)
δn,−m. (2.29)

Since we have the classical relation S(z) ∼ T (z), it means that we can interpret the Sn

modes as the Virasoro modes of the Laurent expansion of the classical stress tensor field

T (z). In other words, the Sn’s span a classical Virasoro algebra with central charge −6 as

given by (2.29). This is sometimes denoted as the Virasoro Poisson algebra Sym′(vir−6)

in the mathematical literature [6]. Hence, we have the identification z(ŝl2) ≃ Sym′(vir−6)

2.2 A gauged WZW model and the geometric Langlands correspondence for

G = SL(2)

Let us now seek a dual description of the above classical, holomorphic chiral algebra of the

twisted sigma-model on SL(2)/B spanned by S(z). To this end, let us first generalise the

action of the twisted sigma-model by making the replacement gij̄ → gij̄ + bij̄ in V of Stwist

in (A.9), where bij̄ is a (1, 1)-form on the target space X associated to a B-field. This just

adds to Stwist a cohomologically-trivial Q+-exact term {Q+,−bij̄ψi
z̄∂zφ

j̄}, and does nothing

to change our above discussions about the classical chiral algebra of the sigma-model. This
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generalised action can be explicitly written as

Sgen =

∫

Σ
|d2z|(gij̄ + bij̄)(∂zφ

j̄∂z̄φ
i) + gij̄ψ

i
z̄Dzψ

j̄ + bij̄ψ
i
z̄∂zψ

j̄ + bil̄,j̄ψ
i
z̄∂zφ

l̄ψj̄ . (2.30)

Now recall that S(z) exists in the classical holomorphic chiral algebra of the ψj̄-

independent, purely bosonic sector of the twisted sigma-model on SL(2)/B. This means

that in order for one to ascertain the dual description of S(z), it suffices to confine oneself

to the study of the holomorphic chiral algebra of the ψj̄-independent sector of the twisted

sigma-model on SL(2)/B. The purely bosonic, ψj̄-independent specialisation of Sequiv,

which describes this particular sector of interest, can be written as

Sbosonic =

∫

Σ
|d2z| (gij̄ + bij̄)∂z̄φ

i∂zφ
j̄ . (2.31)

Notice that Sbosonic just describes a free bosonic string which propagates in an SL(2)/B

target-space. Hence, one can actually describe the holomorphic chiral algebra associated

to the ψj̄-independent sector of the twisted sigma-model on SL(2)/B in terms of the holo-

morphic BRST-cohomology (or chiral algebra) of a B-gauged WZW model on SL(2).4 In

other words, S(z) should correspond to an observable in the classical holomorphic BRST-

cohomology of the B-gauged WZW model on SL(2).

Note that what would be relevant to all our later discussions is the classical, holo-

morphic chiral algebra of the ψj̄-independent, non-supersymmetric sector of the twisted

sigma-model on X = SL(N)/B, for any N ≥ 3. Note also that the above arguments would

apply for all X = SL(N)/B. As such, let us now proceed to describe the B-gauged WZW

model on any SL(N) in greater detail.5

4Note that a non-linear sigma-model on any homogenous coset space such as G/H , will be described

by an asymmetrically H-gauged WZW model on G associated with the action g → gh−1, where g ∈ G

and h ∈ H . However, note that the BRST-cohomology of an asymmetrically H-gauged WZW model on

G coincides exactly with the holomorphic (i.e., purely left-moving) sector of the BRST-cohomology of a

symmetrically H-gauged WZW model on G that is genuinely gauge-invariant, and that which we are thus

considering in this paper. In other words, at the level of the holomorphic chiral algebra, a physically

equivalent description of the ψj̄-independent, non-supersymmetric sector of the twisted sigma-model on

SL(2)/B, will be given by a B-gauged WZW model on SL(2) that is gauge-invariant on the worldsheet.

This argument applies for any G = SL(N) and H = B as well.
5It may be disconcerting to some readers that the Borel subgroup of SL(N,C) which we are gauging the

SL(N,C) WZW model by, is non-compact in general. Apart from citing several well-known examples in the

physical literature [13, 14, 19 – 21] that have done likewise to consider non-compact WZW models gauged

to non-compact (sometimes Borel) subgroups, one can also argue that our model is actually equivalent -

within our context - to a physically consistent model which gauges a compact subgroup instead. Firstly,

note that for a complex flag manifold SL(N,C), we have the relation SL(N,C)/B = SU(N)/C(T ), where

C(T ) is the centralizer of the torus of SU(N) spanned by purely diagonal matrices in SU(N) [22] - in other

words, C(T ) is an anomaly-free, compact diagonal subgroup in the context of a C(T )-gauged WZW model

on SU(N). Secondly, note that the OPE algebras of the affine algebras bsuN and bslN are the same. Together

with the previous footnote, these two points imply that the B-gauged WZW model on SL(N,C) and the

C(T )-gauged WZW model on SU(N) (which can be physically consistently defined, and whose gauge group

is also compact), are equivalent at the level of their holomorphic BRST-cohomologies. However, since one

of our main aims is to relate the gauged WZW model to the algebraic DS-reduction scheme in section 3, we
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The B-gauged WZW model on SL(N). First, note that the action of a general

WZW model can be written as

SWZ(g) =
k′

4π

∫

Σ
d2z Tr(∂zg

−1∂z̄g) +
ik′

24π

∫

B;∂B=Σ
d3x Tr(g−1dg)3, (2.32)

where k′ is the level, and g is a worldsheet scalar field valued in any simple, maximally

non-compact, connected Lie group G (such as SL(N,C) which we are considering in this

paper), that is also periodic along one of the worldsheet directions with period 2π. The

trace Tr is the usual matrix trace in the defining representation of G.

A gauged version of (2.32) can be written as

Sgauged(g,Az , Az̄) = SWZ(g) +
k′

2π

∫

Σ
d2z Tr

[
Az(∂z̄gg

−1 + M̄) −Az̄(g
−1∂zg +M)

+AzgAz̄g
−1 −AzAz̄

]
, (2.33)

where the worldsheet one-form gauge field A = Azdz+Az̄dz̄ is valued in h, the Lie algebra

of a subgroup H of G. Notice that Sgauged(g,Az , Az̄) differs slightly from the standard form

of a gauged WZW model commonly found in the physical literature - additional M̄ and M

constant matrices have been incorporated in the ∂z̄gg
−1 and g−1∂zg terms of the standard

action, so that one can later use them to derive the correct form of the holomorphic stress

tensor without reference to a coset formalism. Setting M̄ and M to the zero matrices

simply takes us back to the standard action for the gauged WZW model. As required,

Sgauged(g,Az , Az̄) is invariant under the standard (chiral) local gauge transformations

g → hgh−1; Az → ∂zh · h−1 + hAzh
−1; Az̄ → ∂z̄h · h−1 + hAz̄h

−1, (2.34)

where h = eλ(z,z̄) ∈ H for any λ(z, z̄) ∈ h.6 The invariance of (2.33) under the gauge trans-

formations in (2.34) can be verified as follows. Firstly, note that the M̄(M)-independent

terms make up the usual Lagrangian for the standard gauged WZW action, which is cer-

tainly invariant under the gauge transformations of (2.34). Next, note that under an in-

finitesimal gauge transformation h ≃ 1 + λ, the terms Tr(Az M̄ ) and Tr(Az̄ M) change as

δTr
(
Az M̄

)
= Tr

(
∂zλ M̄

)
− Tr

(
M̄ [λ,Az ]

)
, (2.35)

δTr (Az̄ M) = Tr (∂z̄λ M) − Tr (M [λ,Az̄]) . (2.36)

Since we will be considering the case where H is the Borel subgroup of G and therefore,

λ and A will be valued in the Lie algebra of a maximally solvable (Borel) subgroup of G,

the second term on the r.h.s. of (2.35) and (2.36) will be zero [21]. What remains are total

divergence terms that will vanish upon integration on Σ because it is a worldsheet with no

want to consider the B-gauged WZW model on SL(N,C). Last but not least, note that we will ultimately

be interested in the classical spectrum of the gauged WZW model only, whereby the compactness or non-

compactness of the gauge group will be irrelevant.
6A similar model has been considered in [21]. However, the action in that context is instead invariant

under a non-chiral local gauge transformation. Moreover, it does not contain the AzAz̄ term present in a

standard gauged WZW model.
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boundaries. Therefore, unless H is a Borel subgroup of G (or any other solvable subgroup

of G), one cannot incorporate M̄ and M in the action and still maintain the requisite gauge

invariance. This explains why generalisations of gauged WZW models with these constant

matrices M̄ and M have not appeared much in the physical literature. Nevertheless, this

generalisation can be considered in our case. As we shall see shortly, this generalisation

will allow us to obtain the correct form of the holomorphic stress tensor of the B-gauged

WZW model on SL(N) without any explicit reference to a coset formalism.

The classical equations of motion that follow from the field variations in (2.34) are

δAz : Dz̄gg
−1|H = −M+, (2.37)

δAz̄ : g−1Dzg|H = −M−, (2.38)

δg : Dz̄(g
−1Dzg) = Fzz̄, (2.39)

δg : Dz(Dz̄gg
−1) = Fz̄z, (2.40)

where Fzz̄ = ∂zAz̄−∂z̄Az +[Az, Az̄] and Fz̄z = ∂z̄Az−∂zAz̄ +[Az̄, Az ] are the non-vanishing

components of the field strength, and the covariant derivatives are given by Dz = ∂z+[Az, ]

and Dz̄ = ∂z̄ + [Az̄, ]. By imposing the condition of (2.38) in (2.39), and by imposing the

condition of (2.37) in (2.40), since M± are constant matrices, we find that we have the

zero curvature condition Fzz̄ = Fz̄z = 0 as expected of a non-dynamically gauged WZW

model. This means that Az and Az̄ are trivial on-shell. One is then free to use the gauge

invariance to set Az and/or Az̄ to a constant such as zero. In setting Az = Az̄ = 0 in (2.39)

and (2.40), noting that Fzz̄ = Fz̄z = 0, we have the relations

∂z̄(g
−1∂zg) = 0 and ∂z(∂z̄gg

−1) = 0. (2.41)

In other words, we have a g-valued, holomorphic conserved current J(z) = g−1∂zg, and a

g-valued antiholomorphic conserved current J̄(z̄) = ∂z̄gg
−1, both of which are dimension

one and generate affine symmetries on Σ. The action in (2.33) can thus be written as

Sgauged(g,Az , Az̄) = SWZ(g) +
k′

2π

∫

Σ
d2z Tr

[
Az(J̄(z̄) + M̄) −Az̄(J(z) +M)

+AzgAz̄g
−1 −AzAz̄

]
, (2.42)

For our case where H is a Borel subgroup B of G, one can further simplify (2.42)

as follows. Firstly, since G is a connected simple group, it will have a simple Lie algebra

g. As such, g will have a Cartan decomposition g = n− ⊕ c ⊕ n+, where c is the Cartan

subalgebra, and n± are the nilpotent subalgebras of the the upper and lower triangular

matrices of G. The Borel subalgebras will then be given by b± = c ⊕ n±, and they

correspond to the Borel subgroups B±. For the complex flag manifolds that we will be

considering in this paper, B+ will be the Borel subgroup of interest. B will henceforth

mean B+ in all of our proceeding discussions. With respect to this decomposition of the

Lie algebra of G, we can write J(z) =
∑dimn−

a=1 Ja
−(z)t−a +

∑dimc
a=1 J

a
c (z)tca +

∑dimn+

a=1 Ja
+(z)t+a ,

and J̄(z̄) =
∑dimn−

a=1 J̄a
−(z̄)t−a +

∑dimc
a=1 J̄

a
c (z̄)tca +

∑dimn+

a=1 J̄a
+(z̄)t+a , where t−a ∈ n−, tca ∈ c,

and t+a ∈ n+. One can also write M =
∑dimn−

a=1 Ma
−t

−
a +

∑dimc
a=1 M

a
c t

c
a +

∑dimn+

a=1 Ma
+t

+
a , and
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M̄ =
∑dimn−

a=1 M̄a
−t

−
a +
∑dimc

a=1 M̄
a
c t

c
a+
∑dimn+

a=1 M̄a
+t

+
a , whereMa

±;c(M̄
a
±;c) are arbitrary number

constants. Next, note that H = B, and B ≃ N+, where N+ = [B,B] is the subgroup of G

generated by its Lie algebra n+ of strictly upper triangular matrices which are traceless, i.e.,

for t, t′ ∈ n+, we have TrL(tt′) −TrR(t′t) = 0, where the trace TrL and TrR are taken over

some L and R representation of G respectively. In other words, N+ is the non-anomalous

subgroup to be gauged, and we can write Az =
∑dimn+

a=1 Ãa
zt

+
a , and Az̄ =

∑dimn+

a=1 Ãa
z̄t

+
a .

Next, note that since Tr(tαa t
β
b ) = δa,bδ

α,β , the trace of the second term on the r.h.s. of (2.42)

will be non-vanishing only for components of J(z)(J̄(z̄)) and M(M̄ ) that are associated to

their expansion in n+. Let us denote J+(z) =
∑dimn+

a=1 Ja
+(z)t+a and M+ =

∑dimn+

a=1 Ma
+t

+
a .

Let us also denote J̄+(z̄) =
∑dimn+

a=1 J̄a
+(z̄)t+a and M̄+ =

∑dimn+

a=1 M̄a
+t

+
a . Then, one can

write the action of a B-gauged WZW model on G = SL(N) as

SB−gauged(g,Az , Az̄ , J
+, J̄+) = SWZ(g)− k′

2π

∫

Σ
d2z Tr[Az̄(J

+(z)+M+)−Az(J̄
+(z̄)+M̄+)

−AzgAz̄g
−1 +AzAz̄]. (2.43)

The B-gauged WZW model on SL(2). Now that we have derived the action

SB−gauged(g,Az , Az̄ , J
+, J̄+) of a B-gauged WZW model on any SL(N), we will proceed

to specialise to the case where G = SL(2). In this case, dim n− = dim c = dim n+ = 1,

and so J+(z) = J1
+(z)t+1 , J̄+(z) = J̄1

+(z)t+1 , M+ = M1
+t

+
1 , M̄+ = M̄1

+t
+
1 , Az = Ã1

z(z)t
+
1

and Az̄ = Ã1
z̄t

+
1 . The gauged WZW action is then given by

SSL(2)(g,Az , Az̄ , J
+, J̄+) = SWZ(g) − k′

2π

∫

Σ
d2z Ã1

z̄(J
1
+(z) +M1

+) − Ã1
z(J̄

1
+(z) + M̄1

+)

−Ã1
zgÃ

1
z̄g

−1 + Ã1
zÃ

1
z̄. (2.44)

Due to the B-gauge invariance of the theory, we must divide the measure in any path

integral computation by the volume of the B-gauge symmetry. That is, the partition

function has to take the form

ZSL(2) =

∫

Σ

[
g−1dg, dÃ1

z , dÃ
1
z̄

]

(gaugevolume)
exp

(
iSSL(2)(g,Az , Az̄ , J

+, J̄+)
)
. (2.45)

One must now fix this gauge invariance to eliminate the non-unique degrees of freedom.

One can do this by employing the BRST formalism which requires the introduction of

Faddev-Popov ghost fields.

In order to obtain the holomorphic BRST transformations of the fields, one simply

replaces the position-dependent infinitesimal gauge parameter ǫ of h = B = exp(−ǫt+1 ) in

the corresponding left-sector of the gauge transformations in (2.34) with the ghost field c,

which then gives us

δBRST(g) = −ct+1 g, δBRST(Ã1
z̄) = −∂z̄c, δBRST(others) = 0. (2.46)

The ghost field c and its anti-ghost partner b will transform as

δBRST(c) = 0, δBRST(b) = B̃, δBRST(B̃) = 0. (2.47)
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In the above, B̃ is the Nakanishi-Lautrup auxiliary field that is the holomorphic BRST

transform of b. It also serves as a Lagrange multiplier to impose the gauge-fixing condition.

In order to obtain the antiholomorphic BRST transformations of the fields, one employs

the same recipe to the corresponding right-sector of the gauge transformations in (2.34)

with the infinitesimal position-dependent gauge parameter now replaced by the ghost field

c̄, which then gives us

δ̄BRST(g) = c̄t+1 g, δ̄BRST(Ã1
z) = −∂z c̄, δ̄BRST(others) = 0. (2.48)

The ghost field c̄ and its anti-ghost partner b̄ will transform as

δ̄BRST(c̄) = 0, δ̄BRST(b̄) = ˜̄B, δ̄BRST( ˜̄B) = 0. (2.49)

In the above, ˜̄B is the Nakanishi-Lautrup auxiliary field that is the antiholomorphic BRST

transform of b̄. It also serves as a Lagrange multiplier to impose the gauge-fixing condition.

Since the BRST transformations in (2.46) and (2.48) are just infinitesimal versions of

the gauge transformations in (2.34), SSL(2)(g,Az , Az̄, J
+, J̄+) will be invariant under them.

An important point to note at this juncture is that in addition to (δBRST+ δ̄BRST)·(δBRST+

δ̄BRST) = 0, the holomorphic and antiholomorphic BRST-variations are also separately

nilpotent, i.e., δ2BRST = 0 and δ̄2BRST = 0. Moreover, δBRST · δ̄BRST = −δ̄BRST · δBRST.

In fact, one can easily inspect this from the field variations themselves. This means that

the BRST-cohomology of the B-gauged WZW model on SL(2) can be decomposed into

independent holomorphic and antiholomorphic sectors that are just complex conjugate of

each other, and that it can be computed via a spectral sequence, whereby the first two

complexes will be furnished by its holomorphic and antiholomorphic BRST-cohomologies

respectively. Since we will only be interested in the holomorphic chiral algebra of the B-

gauged WZW model on SL(2) (which as mentioned, is just identical to its antiholomorphic

chiral algebra by a complex conjugation), we shall henceforth focus on the holomorphic

BRST-cohomology of the B-gauged WZW model on SL(2) (as well as for all other cases

of SL(N) in this paper, since this observation of a polarisation of the BRST-cohomology

will be true of any B-gauged WZW model on SL(N) as we will see.)

By the usual recipe of the BRST formalism, one can fix the gauge by adding to the

BRST-invariant action SSL(2)(g,Az , Az̄, J
+, J̄+), a BRST-exact term. Since the BRST

transformation by (δBRST + δ̄BRST) is nilpotent, the new total action will still be BRST-

invariant as required. The choice of the BRST-exact operator will then define the gauge-

fixing condition. A consistent choice of the BRST-exact operator will give us the requisite

action for the ghost and anti-ghost fields - note that with

SSL(2)(g,Az , Az̄, J
+, J̄+) + (δBRST + δ̄BRST)

(
k′

2π

∫

Σ
d2z Ã1

z̄b+ Ã1
z b̄

)
,

one will indeed have the desired total action, which can be written as

SWZW(g)+
k′

2π

∫

Σ
d2z c∂z̄b+c̄∂z b̄−

k′

2π

∫

Σ
d2zÃ1

z̄

(
J1

+(z)+M1
+ − B̃

)
−Ã1

z

(
J̄1

+(z)+M̄1
++ ˜̄B

)

−Ã1
zgÃ

1
z̄g

−1 + Ã1
zÃ

1
z̄. (2.50)
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From the equation of motion by varying B̃, we have the condition Ã1
z̄ = 0. From the

equation of motion by varying ˜̄B, we have the condition Ã1
z = 0. Together with the

equation of motion by varying Ã1
z̄ and Ã1

z, we have, by integrating out Ã1
z̄ and Ã1

z in (2.50),

the relations J1
+ + M1

+ = B̃ and J̄1
+ + M̄1

+ = − ˜̄B. Thus, the partition function of the

B-gauged WZW model can also be expressed as

ZSL(2) =

∫
[g−1dg, db, dc] exp

(
iSWZW(g) +

ik′

2π

∫

Σ
d2z c∂z̄b+ c̄∂z b̄

)
, (2.51)

whereby the holomorphic BRST variations of the fields that leave the effective action in

ZSL(2) above invariant are now given by

δBRST(g) = −ct+1 g, δBRST(c) = 0, δBRST(b) =
(
J1

+ +M1
+

)
, δBRST(others) = 0. (2.52)

The holomorphic BRST charge which generates the above transformations is therefore

given by

QBRST =

∮
dz

2πi
(J1

+(z) +M1
+)c(z). (2.53)

The OPE’s of the B-gauged WZW model on SL(2). Note that consistent with

the presence of the dimension one operators J±(z) and J3(z) in the holomorphic chiral

algebra of the purely bosonic, ψj̄-independent sector of the sigma-model on SL(2)/B,

which, generate an affine SL(2) OPE algebra, one also has, in the holomorphic BRST-

cohomology of the B-gauged WZW model on SL(2), the dimension one currents J1
±(z) and

J1
c (z) which generate the following affine SL(2) OPE algebra:

J1
c (z)J1

±(z′) ∼ ±J1
±(z′)

z − z′
, (2.54)

J1
c (z)J1

c (z′) ∼ k′/2

(z − z′)2
, (2.55)

J1
+(z)J1

−(z′) ∼ 2J1
c

z − z′
+

k′

(z − z′)2
. (2.56)

From standard field-theoretic considerations of the ghost/anti-ghost kinetic term in the

effective action of the gauged WZW model in (2.51), one will also have the following OPE

(after absorbing k′ by a trivially re-scaling of the fields)

b(z)c(z′) ∼ 1

z − z′
. (2.57)

However, the OPE’s of the b(z) and c(z) fields with any current in (2.54)–(2.56) are triv-

ial. Finally, one can also verify the nilpotency of QBRST by using the OPE’s in (2.54)–

(2.56), (2.57), and its explicit expression in (2.53) - the OPE of the BRST current

(J1
+(z) + M1

+)c(z) with itself is regular. Moreover, one can quickly check using (2.57)

that QBRST in (2.53) will indeed generate the correct field variations in (2.52).
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The holomorphic stress tensor. Though we did not make this obvious in our dis-

cussion above, B̃ must actually vanish - by integrating out Ã1
z̄ in (2.50) and using the

condition Ã1
z = 0, we find that we actually have the relation (J1

+(z) + M1
+) = 0. This

relation (involving the current associated to the Borel subalgebra b of the group B that

we are modding out by) will lead us directly to the correct form of the holomorphic stress

tensor for the gauged WZW model without reference to a coset formalism. Let us look at

this more closely.

Since we have an affine SL(2) algebra from the OPE’s (2.54)–(2.56), we can employ

the Sugawara formalism to construct the stress tensor associated with the SWZW(g) part

of the total action, from the currents in (2.54)–(2.56). Taking into account the part of the

total action associated to the ghost and anti-ghost fields c(z) and b(z), the stress tensor

should be given by

Tgauged(z) = TSL(2)(z) + ∂zb(z)c(z), (2.58)

where

TSL(2)(z) =
: dabJ1

aJ
1
b (z) :

(k′ + 2)
, (2.59)

and dab is the inverse of the Cartan-Killing metric of sl2. Note that with respect to

Tgauged(z), the currents J1
±(z) and J1

c (z) have conformal dimension one. This is inconsistent

with the condition J1
+(z) = −M1

+, as M1
+ is a constant of conformal dimension zero. This

means that one must modify Tgauge(z) so that J1
+(z) will have conformal dimension zero.

An allowable modification involves adding to Tgauge(z) a term that has conformal dimension

two. A little thought will reveal that the total stress tensor must then take the form

Ttotal(z) = TSL(2)(z) + ∂zb(z)c(z) + ∂zJ
1
c (z). (2.60)

A small computation shows that the BRST current (J1
+(z)+M1

+)c(z) has conformal dimen-

sion one under Ttotal(z), which then means that its QBRST charge is a conformal dimension

zero scalar as required. This in turn means that c(z) and b(z) must be of conformal di-

mension one and zero respectively, i.e., the field b(z) and c(z) is a scalar and (holomorphic)

one-form on Σ. Therefore, one should really rewrite c(z) as cz(z) in (2.51), (2.53), (2.58)

and (2.60). In doing so, we find that these equations are now fully consistent with regards

to conformal dimensions.

Note also that because the BRST current is of conformal dimension one with respect

to the holomorphic stress tensor Ttotal(z), it must be annihilated by QBRST; this means

that Ttotal(z) is QBRST-closed. One can also verify that Ttotal(z) cannot be QBRST-exact,

i.e., Ttotal(z) lies in the holomorphic BRST-cohomology of the B-gauged WZW model

on SL(2). Last but not least, a soon-to-be relevant point to note is that since quantum

corrections can only annihilate classes in the BRST-cohomology and not create them,

the classical counterpart of the holomorphic stress tensor Ttotal(z) will be a spin-two field

Tclassical(z) which lies in the classical, holomorphic BRST-cohomology (or holomorphic

chiral algebra) of the B-gauged WZW model on SL(2), where Tclassical(z) will generate the

classical Virasoro transformations on the fields.
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A duality of classical W-algebras underlying a geometric Langlands correspon-

dence for G = SL(2). Note that the observable in the holomorphic BRST-cohomology

of the B-gauged WZW model on SL(2) that will correspond to S(z) of the holomorphic

chiral algebra of the purely bosonic, ψj̄-independent sector of the twisted sigma-model on

SL(2)/B, must have the same spin as S(z). In addition, since S(z) generates a classical Vi-

rasoro symmetry on the worldsheet, it will mean that the corresponding observable ought

to be a spin-two field which exists in the classical, holomorphic BRST-cohomology of the

B-gauged WZW model on SL(2), and which also generates a classical Virasoro symmetry

on the worldsheet.

In order to ascertain the classical observable which corresponds to S(z), first recall

that the quantum definition of S(z) at k 6= −2 is given by S(z) = (k + 2)T (z). Notice

that since the stress tensor T (z) also exists in the holomorphic chiral algebra of the purely

bosonic, ψj̄-independent sector of the sigma-model on SL(2)/B, it will imply that T (z)

must correspond to the stress tensor Ttotal(z) of the B-gauged WZW model on SL(2).

Thus, at k 6= −2, S(z) will correspond to T total(z) = (k + 2)Ttotal(z), and at k = −2, S(z)

will correspond to the classical counterpart T classical(z) of T total(z). Note that T classical(z)

lies in the classical, holomorphic BRST-cohomology of the B-gauged WZW model on SL(2)

as required - at k = −2, T total(z), which usually exists as a quantum operator, will act by

zero in its OPE’s with any other operator, i.e., it will reduce to its classical counterpart

T classical(z) in the classical, holomorphic BRST-cohomology of the gauged WZW model.

Moreover, since the shift in 2 in the factor (k + 2) is due to a quantum effect as explained

earlier, S(z) will actually correspond to T classical(z) = −2Tclassical(z) at k = −2. Hence,

S(z) will indeed correspond to a spin-two field T classical(z) in the classical, holomorphic

BRST-cohomology of the B-gauged WZW on SL(2) which generates a classical Virasoro

transformation of the fields.

What is the classical algebra generated by the Laurent modes of T classical(z)? To

ascertain this, first note that from the explicit form of Ttotal(z) in (2.60), we find that it

has to have a central charge of c = 13 − 6/k′ + 2 − 6(k′ + 2). Hence, the Virasoro modes

of Ttotal(z) =
∑

n L̂nz
−n−2 will obey the following commutator relation

[
L̂n, L̂m

]
= (n−m)L̂n+m +

1

12

[
13 − 6

k′ + 2
− 6(k′ + 2)

]
(n3 − n)δn,−m (2.61)

at the quantum level. Therefore, the commutator relations involving the L̂n modes of

T total(z) =
∑

n L̂nz
−n−2 will be given by

[
L̂n, L̂m

]
=(k+2)

[
(n−m)L̂n+m+(n3−n)δn,−m

(
13(k+2)

12
− 6(k+2)

12(k′+2)
− 6(k+2)(k′+2)

12

)]
.

(2.62)

At k = −2, T total(z) will cease to have a quantum definition, and it will reduce to its classi-

cal counterpart T classical(z). Consequently, the k → −2 (and k′ → ∞) limit of the commu-

tator relation in (2.62), can be interpreted as its classical limit. Therefore, one can view the

term (k+2) in (2.62) as the parameter i~, where ~ → 0 is equivalent to the classical limit of

the commutator relations. Since in a quantisation procedure, we go from {Ln, Lm}P.B. →
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1
i~[L̂n, L̂m], going in reverse would give us the classical Poisson bracket relation

{
Ln, Lm

}
P.B.

= (n −m)Ln+m − 6

12
(k + 2)(k′ + 2)

(
n3 − n

)
δn,−m, (2.63)

where T classical(z) =
∑

n Lnz
−n−2. Since the Poisson bracket must be well-defined as

k → −2 and k′ → ∞, it will mean that (k + 2)(k′ + 2) must be equal to a finite constant l

in these limits. For different values of l, the Poisson algebra generated by the Laurent modes

of T classical(z), will be a classical Virasoro algebra with different central charges. Note at

this point that an equivalence - at the level of the holomorphic chiral algebra - between the

ψj̄-independent sector of the twisted sigma-model on SL(2)/B and the B-gauged WZW

model on SL(2), will mean that the Laurent modes of T classical(z) and S(z) ought to

generate an isomorphic classical algebra. In other words, the Lm’s ought to generate the

same classical Virasoro algebra with central charge −6 that is generated by the Laurent

modes Sm of the sigma-model description in (2.29), i.e., we must have l = 1, or rather

(k + 2) = 1/(k′ + 2). Thus, the Poisson algebra generated by the Lm’s must be given by

{Ln, Lm}P.B. = (n−m)Ln+m − 6

12

(
n3 − n

)
δn,−m. (2.64)

This algebra also coincides with W∞(ŝl2), the classical W-algebra associated to ŝl2 at level

k′ → ∞ obtained via a DS reduction scheme [7]. Since the Sm’s that correspond to the Lm’s

in (2.64) span z(ŝl2), and since for g = sl2 = Lg, we have h∨ = Lh
∨

= 2, and r∨ = 1, where

r∨ is the lacing number of g, we find that an equivalence - at the level of the holomorphic

chiral algebra - between the ψj̄-independent sector of the twisted sigma-model on SL(2)/B

and the B-gauged WZW model on SL(2), will imply an isomorphism of Poisson algebras

z(ĝ) ∼= W∞(Lĝ), (2.65)

and the level relation

(k + h∨)r∨ =
1

(k′ + Lh
∨
)
. (2.66)

Note at this point that the purely bosonic, ψj̄-independent sector of the twisted sigma-

model on SL(2)/B, can be described, via (2.31), by a bosonic string on SL(2)/B. On the

other hand, note that since a bosonic string on a group manifold G can be described as a

WZW model onG, it will mean that theB-gauged WZW model on SL(2) can be interpreted

as a B-gauged bosonic string on SL(2). Thus, we see that an equivalence, at the level of the

holomorphic chiral algebra, between a bosonic string on SL(2)/B and a B-gauged version

of itself on SL(2) - a statement which stems from the ubiquitous notion that one can always

physically interpret a geometrical symmetry of the target space as a gauge symmetry in

the worldsheet theory - will imply an isomorphism of classical W-algebras and a level

relation which underlie a geometric Langlands correspondence for G = SL(2)! Notice that

the correspondence between the k → −2 and k′ → ∞ limits (within the context of the

above Poisson algebras) is indeed consistent with the relation (2.66). These limits define a

“classical” geometric Langlands correspondence. A “quantum” generalisation of the SL(2)

correspondence can be defined for other values of k and k′ that satisfy the relation (2.66),

but with the isomorphism of (2.65) replaced by an isomorphism of quantum W-algebras

(derived from a DS-reduction scheme) associated to ŝl2 at levels k and k′ respectively [6].
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2.3 The twisted sigma-model on SL(3)/B and its classical holomorphic chiral

algebra

Now, let us take X = SL(3)/B, where B is the subgroup of upper triangular matrices of

SL(3) with a nilpotent Lie algebra b. Note that dimCX = 3, and one can cover X with six

open charts Uw where w = 1, 2, . . . , 6, such that each open chart Uw can be identified with

the affine space C3. Hence, the sheaf of CDO’s in any Uw can be described by three free

βγ systems with the action

I =

3∑

i=1

1

2π

∫
|d2z| βi∂z̄γ

i. (2.67)

As before, the βi’s and γi’s are fields of dimension (1, 0) and (0, 0) respectively. They

obey the standard free-field OPE’s; there are no singularities in the operator products

βi(z) · βi(z
′) and γi(z) · γi(z′), while

βi(z)γ
j(z′) ∼ − δj

i

z − z′
. (2.68)

Similarly, the sheaf of CDO’s in a neighbouring intersecting chart Uw+1 is described

by three free β̃γ̃ systems with action

I =

3∑

i=1

1

2π

∫
|d2z| β̃i∂z̄ γ̃

i, (2.69)

where the β̃i and γ̃i fields obey the same OPE’s as the βi and γi fields. In other words,

the non-trivial OPE’s are given by

β̃i(z)γ̃
j(z′) ∼ − δj

i

z − z′
. (2.70)

In order to describe a globally-defined sheaf of CDO’s, one will need to glue the free

conformal field theories with actions (2.67) and (2.69) in the overlap region Uw ∩Uw+1 for

every w = 1, 2, . . . 6, where U7 = U1. To do so, one must use the admissible automorphisms

of the free conformal field theories defined in (A.29)–(A.30) to glue the free-fields together.

In the case ofX = SL(3)/B, the relation between the coordinates in Uw and Uw+1 will mean

that the γ̃i’s in Uw+1 will be related to the γi’s in Uw via the relation [γ̃] = [Vw+1]
−1[Vw][γ],

where the 3 × 3 matrices [Vw+1] and [Vw] are elements of the S3 permutation subgroup of

GL(3) matrices associated to the open charts Uw+1 and Uw respectively, and [γ] is a 3× 1

column matrix with the γi’s as entries. By substituting this relation between the γ̃i’s and

γi’s in (A.29)–(A.30), one will have the admissible automorphisms of the fields, which can

then be used to glue together the local sheaves of CDO’s in the overlap region Uw ∩ Uw+1

for every w = 1, 2, . . . , 6. These gluing relations for the free fields can be written as

γ̃i =
[
V −1

w+1 · Vw

]i
j γ

j , (2.71)

β̃i = βkD
k
i + ∂zγ

jEij, (2.72)
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where i, j, k = 1, 2, . . . , 3. Here, D and E are 3 × 3 matrices, whereby [(DT )−1]i
k =

∂i[V
−1
w+1 ·Vw]kj γ

j and [E]ij = ∂iBj. It can be verified that β̃ and γ̃ obey the correct OPE’s

amongst themselves. Moreover, let Rw represent a transformation of the fields in going from

Uw to Uw+1. One can indeed verify that just as in the previous case where we considered

constructing a sheaf of CDO’s on SL(2)/B, there is no anomaly to a global definition of

a sheaf of CDO’s on X = SL(3)/B - a careful computation will reveal that one will get

the desired composition maps (R6R5R4R3R2R1) · γj = γj and (R6R5R4R3R2R1) · βi = βi.

Again, this is just a statement that one can always define a sheaf of CDO’s on any flag

manifold SL(N)/B [11].

Global sections of the Sheaf of CDO’s on X = SL(3)/B. Since X = SL(3)/B is

of complex dimension 3, the chiral algebra A will be given by A =
⊕gR=3

gR=0H
gR(X, Ôch

X )

as a vector space. As before and throughout this paper, it would suffice for our purpose

to concentrate on just the purely bosonic sector of A - from our Q+-Cech cohomology

dictionary, this again translates to studying only the global sections in H0(X, Ôch
X ).

According to theorem 5.13 of [11], one can always find elements in H0(M, Ôch
M ) for any

flag manifold M = SL(N)/B, that will furnish a module of an affine SL(N) algebra at the

critical level. This means that one can always find dimension one global sections of the

sheaf Ôch
X that correspond to ψī-independent currents Ja(z) for a = 1, 2, . . . dim sl3 = 8,

that satisfy the OPE’s of an affine SL(3) algebra at the critical level k = −3:

Ja(z)Jb(z
′) ∼ − 3dab

(z − z′)2
+
∑

c

fab
c Jc(z

′)

(z − z′)
, (2.73)

where dab is the Cartan-Killing metric of sl3.
7 Since these are global sections, it will be

true that J̃a(z) = Ja(z) on any Uw∩Uw+1 and a. Moreover, from our Q+-Cech cohomology

dictionary, they will be Q+-closed chiral vertex operators that are holomorphic in z, which

means that one can expand them in a Laurent series that allows an affinisation of the

SL(3) algebra generated by their resulting zero modes. Similar to the SL(2)/B ≃ CP
1

case, the space of these operators obeys all the physical axioms of a chiral algebra except

for reparameterisation invariance on the z-plane or worldsheet Σ. We will substantiate

this last statement next by showing that the holomorphic stress tensor fails to exist in the

Q+-cohomology at the quantum level. Again, this observation will be important in our

discussion of a geometric Langlands correspondence for G = SL(3).

The Segal-Sugawara tensor and the classical holomorphic chiral algebra. Recall

that for any affine algebra ĝ at level k 6= −h∨, where h∨ is the dual Coxeter number of the

Lie algebra g, one can construct the corresponding stress tensor out of the currents of ĝ

7Note that one can consistently introduce appropriate fluxes to deform the level away from −3 - recall

from our discussion in section A.7 that the Eij = ∂iBj term in (2.72) is related to the fluxes that correspond

to the moduli of the chiral algebra, and since this term will determine the level k of the affine SL(3) algebra

via the identification of the global sections β̃i with the affine currents valued in the subalgebra of sl3

associated to its positive roots, turning on the relevant fluxes will deform k away from −3. Henceforth,

whenever we consider k 6= −3, we really mean turning on fluxes in this manner.
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via a Segal-Sugawara construction [16]. In the present case of an affine SL(3) algebra, the

stress tensor can be constructed as

T (z) =
: dabJaJb(z) :

k + 3
, (2.74)

where dab is the inverse of the Cartan-Killing metric of sl3, and h∨ = 3. As required, for

every k 6= −3, the modes of the Laurent expansion of T (z) will span a Virasoro algebra.

In particular, T (z) will generate holomorphic reparametrisations of the coordinates on the

worldsheet Σ. Notice that this definition of T (z) in (2.74) is ill-defined when k = −3.

Nevertheless, one can always associate T (z) with the Segal-Sugawara operator S(z) that

is well-defined at any finite level, whereby

S(z) = (k + 3)T (z), (2.75)

and

S(z) = : dabJaJb(z) :. (2.76)

From (2.75), we see that S(z) generates, in its OPE’s with other field operators, (k + 3)

times the transformations usually generated by the stress tensor T (z). Therefore, at the

level k = −3, S(z) generates no transformations at all - its OPE’s with all other field op-

erators are trivial. This is equivalent to saying that the holomorphic stress tensor does not

exist at the quantum level, since S(z), which is the only well-defined operator at this level

that could possibly generate the transformation of fields under an arbitrary holomorphic

reparametrisation of the worldsheet coordinates on Σ, acts by zero in the OPE’s.

Despite the fact that S(z) will cease to exist in the spectrum of physical operators

associated to the twisted sigma-model on X = SL(3)/B at the quantum level, it will

nevertheless exist as a field in its classical Q+-cohomology or holomorphic chiral algebra.

One can convince oneself that this is true as follows. Firstly, from our Q+-Cech cohomology

dictionary, since the Ja(z)’s are in H0(X, Ôch
X ), it will mean that they are in the Q+-

cohomology of the sigma-model at the quantum level. Secondly, since quantum corrections

can only annihilate cohomology classes and not create them, it will mean that the Ja(z)’s

will be in the classical Q+-cohomology of the sigma-model, i.e., the currents are Q+-closed

and are therefore invariant under the transformations generated by Q+ in the absence

of quantum corrections. Hence, one can readily see that (the classical counterpart of)

S(z) in (2.76) will also be Q+-closed at the classical level. Lastly, recall from section 2.3

that [Q+, T (z)] = 0 such that T (z) 6= {Q+, . . .} in the absence of quantum corrections

to the action of Q+ in the classical theory. Note also that the integer 3 in the factor

(k+3) of the expression S(z) in (2.75), is due to a shift by h∨ = 3 in the level k because of

quantum renormalisation effects [17], i.e., the classical expression of S(z) for a general level

k can actually be written as S(z) = kT (z), and therefore, one will have [Q+,−3T (z)] =

[Q+, S(z)] = 0, where S(z) 6= {Q+, . . .} in the classical theory. Therefore, S(z) will be a

spin-two field in the classical holomorphic chiral algebra of the purely bosonic sector of the

twisted sigma-model on X = SL(3)/B. This observation is also consistent with the fact

that S(z) fails to correspond to a global section of the sheaf Och
X of CDO’s - note that in our
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case, we actually have S(z) = −3T (z) in the classical theory, and this will mean that under

quantum corrections to the action of Q+, we will have [Q+, Szz] = −3∂z(Rij̄∂zφ
iψj̄) 6= 0

(since Rij̄ 6= 0 for any flag manifold SL(N)/B), which corresponds in the Cech cohomology

picture to the expression
˜̂
S(z) − Ŝ(z) 6= 0, i.e., Ŝ(z), the Cech cohomology counterpart to

the S(z) operator, will fail to be in H0(X, Ôch
X ). Consequently, one can always represent

S(z) by a classical c-number. This point will again be important when we discuss how one

can define Hecke eigensheaves that will correspond to flat LG-bundles on a Riemann surface

Σ in our physical interpretation of the geometric Langlands correspondence for G = SL(3).

The fact that S(z) acts trivially in any OPE with other field operators implies that

its Laurent modes will commute with the Laurent modes of any of these other field

operators; in particular, they will commute with the Laurent modes of the Ja(z) currents

- in other words, the Laurent modes of S(z) will span the centre z(ŝl3) of the completed

universal enveloping algebra of the affine SL(3) algebra ŝl3 at the critical level k = −3

(generated by the Laurent modes of the Ja(z) currents in the quantum chiral algebra of

the twisted sigma-model on SL(3)/B). Notice also that S(z) is ψj̄-independent and is

therefore purely bosonic in nature. In other words, the local field S(z) exists only in the

classical holomorphic chiral algebra of the purely bosonic (or ψj̄-independent) sector of

the twisted sigma-model on X = SL(3)/B.

A classical Virasoro algebra. Note that since S(z) is holomorphic in z and is of

conformal dimension two, one can expand it in terms of a Laurent expansion as

S(z) =
∑

n∈Z

Ŝnz
−n−2. (2.77)

Recall that for the general case of k 6= −3, a quantum definition of S(z) exists, such that

the Ŝn modes of the Laurent expansion can be related to the Ja,n modes of the ŝl3 currents

through the quantum commutator relations

[Ŝn, Ja,m] = −(k + 3)mJa,n+m, (2.78)

[Ŝn, Ŝm] = (k + 3)

(
(n−m)Ŝn+m +

8k

12
(n3 − n) δn,−m

)
, (2.79)

where a = 1, 2, . . . , 8. If we now let k = −3, we will have [Ŝn, Ja,m] = [Ŝn, Ŝm] = 0 - the

Sm’s thus generate the (classical) centre of the completed universal enveloping algebra of

ŝl3 as mentioned above.

Since we now understand that S(z) must be a holomorphic classical field at k = −3,

let us rewrite the Laurent expansion of S(z) as

S(z) =
∑

n∈Z

Snz
−n−2 (2.80)

so as to differentiate the classical modes of expansion Sn from their quantum counterpart

Ŝn in (2.75). Unlike the Ŝn’s which obey the quantum commutator relations in (2.79) for

an arbitrary level k 6= −3, the Sn’s, being the modes of a Laurent expansion of a classical
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field, will instead obey Poisson bracket relations that define a certain classical algebra

when k = −3.

Based on our arguments thus far, we learn that the quantum version of S(z) as ex-

pressed in (2.75), must reduce to its classical counterpart as expressed in (2.80), when

k = −3. In other words, one can see that by taking (k + 3) → 0, we are going to the

classical limit. This is analogous to taking the ~ → 0 limit in any quantum mechanical

theory whenever one wants to ascertain its classical counterpart. In fact, by identifying

(k+ 3) with i~, and by noting that one must make the replacement from Possion brackets

to commutators via {Sn, Sm}P.B. → 1
i~[Ŝn, Ŝm] in quantising the Sn’s into operators, we

can ascertain the classical algebra generated by the Sn’s from (2.79) as

{Sn, Sm}P.B. = (n−m)Sn+m − 24

12
(n3 − n) δn,−m. (2.81)

Since we have the classical relation S(z) ∼ T (z), it means that we can interpret the Sn

modes as the Virasoro modes of the Laurent expansion of the classical stress tensor field

T (z). In other words, the Sn’s generate a classical Virasoro algebra with central charge

−24 as given by (2.81). This can be denoted mathematically as the Virasoro Poisson

algebra Sym′(vir−24).

A higher-spin analog of the Segal-Sugawara tensor and the classical holomor-

phic chiral algebra. For an affine SL(N) algebra where N > 2, one can generalise

the Sugawara formalism to construct higher-spin analogs of the holomorphic stress tensor

with the currents. These higher-spin analogs have conformal weights 3, 4, . . . N . These

higher-spin analogs are called Casimir operators, and were first constructed in [25].

In the context of our affine SL(3) algebra with a module that is furnished by the global

sections of the sheaf of CDO’s on X = SL(3)/B, a spin-three analog of the holomorphic

stress tensor will be given by the 3rd-order Casimir operator [12]

T (3)(z) =
: d̃abc(k)(Ja(JbJc))(z) :

k + 3
, (2.82)

where d̃abc(k) is a completely symmetric traceless sl3-invariant tensor of rank 3 that depends

on the level k of the affine SL(3) algebra in question. d̃abc(k) is also well-defined and finite

at k = −3. The superscript on T (3)(z) just denotes that it is a spin-three analog of T (z).

As with T (z) in (2.74), T (3)(z) is ill-defined when k = −3. Nevertheless, one can

always make reference to a higher-spin analog of the Segal-Sugawara tensor S(3)(z) that is

well-defined for any finite value of k, where its relation to T (3)(z) is given by

S(3)(z) = (k + 3)T (3)(z), (2.83)

and

S(3)(z) = : d̃abc(k)(Ja(JbJc))(z) :. (2.84)

That is, the operator S(3)(z) generates in its OPE’s with all other operators of the quantum

theory, (k + 3) times the field transformations typically generated by T (3)(z).
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Notice however, that at k = −3, S(3)(z) acts by zero in its OPE with any other oper-

ator. This is equivalent to saying that T (3)(z) does not exist as a quantum operator at all,

since the only well-defined operator S(3)(z) which is supposed to generate the field trans-

formations associated to T (3)(z), act by zero and thus generate no field transformations at

all. From our Q+-Cech cohomology dictionary, this means that the ψī-indepedent operator

T (3)(z) will fail to correspond to a dimension three global section of Ôch
X . Since we have,

at the classical level, the relation S(3)(z) = −3T (3)(z), it will mean that S(3)(z) will also

fail to correspond to a dimension three global section of Ôch
X . Thus, S(3)(z) will fail to be

an operator at the quantum level. Is it even a spin-three field in the classical holomorphic

chiral algebra of the twisted sigma-model on SL(3)/B, one might ask. The answer is yes.

To see this, recall that each of the Ja(z)’s are separately Q+-invariant and not Q+-exact

at the classical level. Therefore, the classical counterpart of S(3)(z) in (2.84) must also

be such, which in turn means that it will be in the classical Q+-cohomology and hence

classical chiral algebra of the twisted sigma-model on SL(3)/B.

The fact that S(3)(z) acts trivially in any OPE with other field operators implies

that its Laurent modes will commute with the Laurent modes of any other operator;

in particular, they will commute with the Laurent modes of the currents Ja(z) for

a = 1, 2, . . . , 8 - in other words, the Laurent modes of S(3)(z) will span the centre z(ŝl3) of

the completed universal enveloping algebra of the affine SL(3) algebra ŝl3 at the critical

level k = −3 (generated by the Laurent modes of the Ja(z) currents of the quantum

chiral algebra of the twisted sigma-model on SL(3)/B). Last but not least, notice that

the S(3)(z) field is also ψj̄-independent and is therefore purely bosonic in nature. In

other words, the local fields S(z) and S(3)(z), whose Laurent modes together generate

z(ŝl3), exist only in the classical holomorphic chiral algebra of the purely bosonic (or

ψj̄-independent) sector of the twisted sigma-model on X = SL(3)/B.

A classical W3-algebra. For an affine SL(3) algebra at an arbitrary level k 6= −3,

as in the case of S(z) discussed earlier, a quantum definition of S(3)(z) exists. In fact,

consider the following operators given by S
(3)

(z) = (
√

3/200) : dabc(Ja(JbJc))(z) : and

S(z) = (1/4) : dabJaJb(z) :, where dabc is just a rank-three extension of dab. It can be shown

that S
(3)

(z) and S(z) together span a closed Casimir OPE algebra which is isomorphic to

a particular W3 OPE algebra [25]. This implies that for k 6= −3, both S
(3)

(z) and S(z)

and therefore S(z) ∼: dabJaJb(z) : and S(3)(z) ∼: dabc(Ja(JbJc))(z) :, will exist as quantum

operators in some cohomology - the Q+-cohomology in this instance. This will in turn

mean that S(z) = (k + 3)T (z) and S(3)(z) = (k + 3)T (3)(z) must also span a closed OPE

algebra that is equivalent - at the level of Q+-cohomology - to this Casimir OPE algebra,

when k 6= −3. Since we know that for k 6= −3, T (z) will generate a Virasoro subalgebra of

a closed W3 OPE algebra with central charge c = 8k/(k + 3), it will mean that S(z) and

S(3)(z) will satisfy a rescaled (by a factor of (k+3)) version of a closed W3 OPE algebra at

c = 8k/(k+3) for k 6= −3. Because S(3)(z) is holomorphic in z, we can Laurent expand it as

S(3)(z) =
∑

n∈Z

Ŝ(3)
n z−n−3. (2.85)
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At k 6= −3, the Laurent modes Ŝ
(3)
n , together with the Laurent modes Ŝn of S(z), will

then obey the following quantum commutator relations
[
Ŝn, Ŝ

(3)
m

]
= (k + 3)(2n −m)Ŝ

(3)
n+m, (2.86)

and
[
Ŝ(3)

m , Ŝ(3)
n

]
= (k + 3)

[
8k

360
m(m2 − 1)(m2 − 4)δm,−n

]
(2.87)

+(k + 3)

[
(m− n)

(
1

15
(m+ n+ 3)(m + n+ 2) − 1

6
(m+ 2)(n + 2)

)
Ŝm+n

]

+(k+3)

[
16

62k+66
(m−n)

(
∑

p

Ŝm+n−pŜp−
3

10
(k+3)(m+n+3)(m+n+2)Ŝm+n

)]
.

Now let us consider the case when k = −3. From our earlier explanations about the

nature of S(3)(z) and S(z) at k = −3, we find that they will cease to exist as quantum op-

erators at k = −3. Since we understand that S(3)(z), just like S(z), must be a holomorphic

classical field at k = −3, we shall rewrite the Laurent expansion of S(3)(z) as

S(3)(z) =
∑

n∈Z

S(3)
n z−n−3, (2.88)

so as to differentiate the classical modes of expansion S
(3)
n from their quantum counterpart

Ŝ
(3)
n in (2.85). Unlike the Ŝ

(3)
n ’s which obey the quantum commutator relations in (2.87)

for an arbitrary level k 6= −3, the S
(3)
n ’s, being the modes of a Laurent expansion of a

classical field, will instead obey Poisson bracket relations that define a certain classical

algebra when k = −3. Since every Ŝ
(3)
n must reduce to its classical counterpart S

(3)
n when

k = −3, one can see that by taking (k+3) → 0, we are actually going to the classical limit.

This is analogous to taking the ~ → 0 limit in any quantum mechanical theory whenever

one wants to ascertain its classical counterpart. In fact, by identifying (k+ 3) with i~, and

by noting that one must make the replacement from Possion brackets to commutators via

{Dn,Dm}P.B. → 1
i~[D̂n, D̂m] in quantising any classical mode Dn into an operator, we can

ascertain the classical algebra generated by the S
(3)
n ’s and Sn’s from (2.86) and (2.87) as

{
Sn, S

(3)
m

}
P.B.

= (2n −m) Ŝ
(3)
n+m, (2.89)

and
{
S(3)

m , S(3)
n

}

P.B.
= − 24

360
m(m2 − 1)(m2 − 4)δm,−n − 4

30
(m− n)

∑

p

Sm+n−p Sp

+(m− n)

(
1

15
(m+ n+ 3)(m+ n+ 2) − 1

6
(m+ 2)(n + 2)

)
Sm+n.

(2.90)

Together with the earlier expression

{Sn, Sm}P.B. = (n−m)Sn+m − 24

12
(n3 − n) δn,−m, (2.91)
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we see that the S
(3)
m ’s and Sm’s generate a classical W3-algebra with central charge −24.

Note that the algebra is closed amongst the S
(3)
n and Sn modes; this is true because both

S(3)(z) and S(z) are in the classical Q+-cohomology of the sigma-model.8 Thus, if we

denote this classical algebra by W3(−24), we then have the identification z(ŝl3) ≃ W3(−24).

2.4 A gauged WZW model and the geometric Langlands correspondence for

G = SL(3)

The B-gauged WZW model on SL(3). According to our discussion in section 2.2, the

classical holomorphic chiral algebra of the purely bosonic sector of the twisted sigma-model

on SL(3)/B - in which lie the fields S(z) and S(3)(z) - will be given by the classical, holomor-

phic BRST-cohomology of a B-gauged WZW model on SL(3) - from which one ought to find

non-trivial classes that are in one-to-one correspondence with the fields S(z) and S(3)(z)

respectively. As such, we shall proceed to specialise the action SB−gauged(g,Az , Az̄ , J
+, J̄+)

of a (non-dynamically) B-gauged WZW model on any SL(N) defined in (2.43) of §2.2, to

the case where the target-space is now SL(3).

In the case of SL(3), we have dim n± = 3 and dim c = 2, so we

can write J(z) =
∑3

a=1 J
a
−(z)t−a +

∑2
a=1 J

a
c (z)tca +

∑3
l=1 J

l
+(z)t+l , and J̄(z̄) =∑3

a=1 J̄
a
−(z̄)t−a +

∑2
a=1 J̄

a
c (z̄)tca +

∑3
l=1 J̄

l
+(z̄)t+l , where t−a ∈ n−, tca ∈ c, and t+a ∈ n+.

One can also write M =
∑3

a=1M
a
−t

−
a +

∑2
a=1M

a
c t

c
a +

∑3
l=1M

l
+t

+
l , where Ma

−;c and M l
+

are arbitrary number constants, and M̄ =
∑3

a=1 M̄
a
−t

−
a +

∑2
a=1 M̄

a
c t

c
a +

∑3
l=1 M̄

l
+t

+
l ,

where M̄a
−;c and M̄ l

+ are arbitrary number constants. In addition, one can also write

Az̄ =
∑3

l=1 Ã
l
z̄t

+
l and Az =

∑3
l=1 Ã

l
zt

+
l . Let us denote J+(z) =

∑3
l=1 J

l
+(z)t+l and

M+ =
∑3

l=1M
l
+t

+
l . Let us also denote J̄+(z̄) =

∑3
l=1 J̄

l
+(z̄)t+l and M̄+ =

∑3
l=1 M̄

l
+t

+
l .

Hence, one can write the action for the B-gauged WZW model on SL(3) as

SSL(3)(g,Az , Az̄, J
+, J̄+) = SWZ(g)− k′

2π

∫

Σ
d2z

3∑

l=1

[
Ãl

z̄(J
l
+(z)+M l

+)−Ãl
z(J̄

l
+(z̄)+M̄ l

+)
]

−Tr[AzgAz̄g
−1 −AzAz̄] (2.92)

Due to the B-gauge invariance of the theory, we must divide the measure in any path

integral computation by the volume of the B-gauge symmetry. That is, the partition

function has to take the form

ZSL(3) =

∫

Σ

[
g−1dg, dÃl

z , dÃ
l
z̄

]

(gaugevolume)
exp

(
iSSL(3)(g,Az , Az̄ , J

+, J̄+)
)
. (2.93)

One must now fix this gauge invariance to eliminate the non-unique degrees of freedom.

One can do this by employing the BRST formalism which requires the introduction of

Faddev-Popov ghost fields.

8Note at this point that if O and O′ are non-exact Q+-closed observables in the (classical) Q+-

cohomology, i.e., {Q+,O} = {Q+,O
′} = 0, then {Q+,OO′} = 0. Moreover, if {Q+,O} = 0, then

O{Q+,W} = {Q+,OW} for any observable W . These two statements mean that the cohomology classes

of observables that commute with Q+ form a closed and well-defined (classical) algebra.
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In order to obtain the holomorphic BRST transformations of the fields, one sim-

ply replaces the position-dependent infinitesimal gauge parameter ǫl of h = B =

exp(−∑3
l=1 ǫ

lt+l ) in the corresponding left-sector of the gauge transformations in (2.34)

with the ghost field cl, which then gives us

δBRST(g) = −clt+l g, δBRST

(
Ãl

z̄

)
= −Dz̄c

l, δBRST(others) = 0. (2.94)

The components of the ghost field c(z) =
∑3

l=1 c
l(z)t+l and those of its anti-ghost partner

b(z) =
∑3

l=1 b
l(z)t+l will transform as

δBRST(cl) = −1

2
f l

mkc
mck, δBRST(bl) = B̃l, δBRST(B̃l) = 0, (2.95)

where the f l
mk’s are the structure constants of the nilpotent subalgebra n+. Also, the B̃l’s

are the Nakanishi-Lautrup auxiliary fields that are the BRST transforms of the bl’s. They

also serve as a Lagrange multipliers to impose the gauge-fixing conditions.

In order to obtain the antiholomorphic BRST transformations of the fields, one employs

the same recipe to the corresponding right-sector of the gauge transformations in (2.34)

with the infinitesimal position-dependent gauge parameter now replaced by the ghost field

c̄l, which then gives us

δ̄BRST(g) = c̄lt+l g, δ̄BRST(Ãl
z) = −Dz c̄

l, δ̄BRST(others) = 0. (2.96)

The components of the ghost field c̄(z̄) =
∑3

l=1 c̄
l(z̄)t+l and those of its anti-ghost partner

b̄(z̄) =
∑3

l=1 b̄
l(z̄)t+l will transform as

δ̄BRST(c̄l) = −1

2
f l

mk c̄
mc̄k, δ̄BRST(b̄l) = ˜̄Bl, δ̄BRST( ˜̄Bl) = 0. (2.97)

In the above, the ˜̄Bl’s are the Nakanishi-Lautrup auxiliary fields that are the antiholomor-

phic BRST transforms of the b̄l fields. They also serve as Lagrange multipliers to impose

the gauge-fixing conditions.

Since the BRST transformations in (2.94) and (2.96) are just infinitesimal versions

of the gauge transformations in (2.34), SSL(3)(g,Az , Az̄ , J
+, J̄+) will be invariant under

them. An important point to note at this juncture is that in addition to (δBRST + δ̄BRST) ·
(δBRST + δ̄BRST) = 0, the holomorphic and antiholomorphic BRST-variations are also

separately nilpotent, i.e., δ2BRST = 0 and δ̄2BRST = 0. Moreover, δBRST · δ̄BRST = −δ̄BRST ·
δBRST. This means that the BRST-cohomology of the B-gauged WZW model on SL(3)

can be decomposed into independent holomorphic and antiholomorphic sectors that are

just complex conjugate of each other, and that it can be computed via a spectral sequence,

whereby the first two complexes will be furnished by its holomorphic and antiholomorphic

BRST-cohomologies respectively. Since we will only be interested in the holomorphic chiral

algebra of the B-gauged WZW model on SL(3) (which as mentioned, is just identical to

its antiholomorphic chiral algebra by a complex conjugation), we shall henceforth focus on

the holomorphic BRST-cohomology of the B-gauged WZW model on SL(3).

By the usual recipe of the BRST formalism, one can fix the gauge by adding to the

BRST-invariant action SSL(3)(g,Az , Az̄, J
+, J̄+), a BRST-exact term. Since the BRST
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transformation by (δBRST + δ̄BRST) is nilpotent, the new total action will still be BRST-

invariant as required. The choice of the BRST-exact operator will then define the gauge-

fixing conditions. A consistent choice of the BRST-exact operator that will give us the

requisite action for the ghost and anti-ghost fields is

SSL(3)(g,Az , Az̄, J
+, J̄+) + (δBRST + δ̄BRST)

(
k′

2π

∫

Σ
d2z

3∑

l=1

Ãl
z̄b

l + Ãl
z b̄

l

)
,

where one will indeed have the desired total action, which can be written as

SWZW(g) − k′

2π

∫

Σ
d2z

{ 3∑

l=1

[
Ãl

z̄

(
J l

+(z) +M l
+ − B̃l

)
− Ãl

z

(
J̄ l

+(z̄) + M̄ l
+ + ˜̄Bl

)]

−Tr
[
AzgAz̄g

−1−AzAz̄

]}
+
k′

2π

∫

Σ
d2z

3∑

l=1

(
clDz̄b

l++̄clDz b̄
l
)
.

(2.98)

From the equations of motion by varying the B̃l’s, we have the conditions Ãl
z̄ = 0 for

l = 1, 2, 3. From the equations of motion by varying the ˜̄Bl’s, we also have the conditions

Ãl
z = 0 for l = 1, 2, 3. Thus, the partition function of the B-gauged WZW model can also

be expressed as

ZSL(3) =

∫
[g−1dg, db, dc, db̄, dc̄] exp

(
iSWZW(g)+

ik′

2π

∫

Σ
d2z Tr(c · ∂z̄b)(z)+Tr(c̄ · ∂z b̄)(z̄)

)
,

(2.99)

where the holomorphic BRST variations of the fields which leave the effective action

in (2.99) invariant are now given by

δBRST(g) = −cmt+mg, δBRST(cl) = −1

2
f l

mkc
mck, δBRST(bl) = J l

+ +M l
+ − f l

mkb
mck,

δBRST(others) = 0. (2.100)

Though we did not make this obvious in our discussion above, by integrating out the

Ãl
z̄’s in (2.92), and using the above conditions Ãl

z = 0 for l = 1, 2, 3, we find that we

actually have the relations (J l
+(z) +M l

+) = 0 for l = 1, 2, 3. These relations (involving the

current associated to the Borel subalgebra b of the group B that we are modding out by)

will lead us directly to the correct form of the holomorphic stress tensor for the gauged

WZW model without reference to a coset formalism. Let us look at this more closely. Since

we have, in the holomorphic BRST-cohomology of this non-dynamically B-gauged WZW

model on SL(3), currents that generate an affine SL(3) OPE algebra, (consistent with the

presence of an affine SL(3) OPE algebra generated by operators in the holomorphic chiral

algebra of the purely bosonic sector of the sigma-model on SL(3)/B), we can employ the

Sugawara formalism to construct the holomorphic stress tensor associated to the SWZW(g)

part of the total action from the currents, and it can be written as

TSL(3)(z) =
: J(z) · J(z) :

(k′ + 3)
, (2.101)
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where the above dot product between the currents J(z) is taken with respect to the Cartan-

Killing metric on sl3. Note that with respect to TSL(3)(z), the currents J l
+(z) for l = 1, 2, 3

(and in fact all the other affine SL(3) currents) have conformal dimension one. This is

inconsistent with the condition J l
+(z) = −M l

+, as the M l
+’s are constants of conformal

dimension zero. This means that one must modify TSL(3)(z) so that the J l
+(z)’s will have

conformal dimension zero. A physically consistent modification involves adding to TSL(3)(z)

a term that has conformal dimension two. A little thought will reveal that the only con-

sistent candidate for the modified stress tensor of SWZW(g) will be given by

Tmodified(z) = TSL(3)(z) + ∂zJ
1
c (z) + ∂zJ

2
c (z). (2.102)

With respect to Tmodified(z), the currents J1
+(z) and J2

+(z) have vanishing conformal dimen-

sions as required. On the other hand, the current J3
+(z) will now have conformal dimension

-1. Thus, it must mean that there cannot be any restriction on the conformal dimension

of J3
+(z), and therefore, M3

+ must vanish.

In order for the above observations to be consistent with the fact that the BRST-

charge QBRST generating the variations δBRST(bl) of (2.100) must be a scalar of conformal

dimension zero, we find that bl’s and hence the cl’s must have the following conformal

dimensions: (b1, b2, b3) ↔ (0, 0,−1) and (c1, c2, c3) ↔ (1, 1, 2). From the effective action

in (2.99), we can compute the holomorphic stress tensor of the left-moving ghost/anti-ghost

system. Including this contribution, we find that the total holomorphic stress tensor can

be written as

Ttotal(z) = TSL(3)(z) + ∂zJ
1
c (z) + ∂zJ

2
c (z) + ∂zb

1(z)c1z(z) + ∂zb
2(z)c2z(z)

+2∂zb
3,z(z)c3zz(z) + b3,z(z)∂zc

3
zz(z). (2.103)

The conserved current associated to the holomorphic BRST-variations of the fields

in (2.100) can be computed as

IBRST = c1z
(
J1

+(z) +M1
+

)
+ c2z

(
J2

+(z) +M2
+

)
+ c3zzJ

3,z
+ (z) + c1z(z)c

2
z(z)b

3,z(z). (2.104)

Apart from a trivial inspection, one can also verify, from the affine SL(3) OPE algebra

and the OPE algebra between the left-moving ghost/anti-ghost fields, that IBRST is of

conformal dimension one with respect to Ttotal(z). This means that as required, one can

define a conformal dimension zero scalar BRST-charge

QBRST =

∮
dz

2πi
c1z
(
J1

+(z) +M1
+

)
+ c2z

(
J2

+(z) +M2
+

)
+ c3zzJ

3,z
+ (z) + c1z(z)c

2
z(z)b

3,z(z),

(2.105)

which generates the correct holomorphic BRST-variation of the fields. Note that the holo-

morphic BRST-charge can also be written in its general form as

QBRST =

∮
dz

2πi




dimn+=3∑

l=1

cl
(
J l

+(z) +M l
+

)
− 1

2

dimn+=3∑

l,m,k=1

f l
mkb

mclck


 . (2.106)

Using the free field OPE’s that the ghost fields generate, one can immediately verify that

QBRST as given in (2.106) will indeed generate the field variations in (2.100).
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More about the holomorphic stress tensor and its higher-spin analog. Since

IBRST is of conformal dimension one with respect to Ttotal(z), it will mean that Ttotal(z)

will be annihilated by QBRST. Moreover, one can also check that Ttotal(z) 6= {QBRST, . . .}.
In other words, Ttotal(z) is a spin-two observable in the holomorphic BRST-cohomology

of the B-gauged WZW model on SL(3). From the explicit expression of Ttotal(z), we

find that its Laurent modes will generate a Virasoro algebra with central charge c =

2 − 24(k′ + 2)2/(k′ + 3).

Note that one can define a cohomologically equivalent total holomorphic stress tensor

TW3(z) via

TW3(z) = Ttotal(z) + {QBRST, t(z)}, (2.107)

whereby

t(z) = γ1,z(z)∂zb
1(z) + γ2,z(z)∂zb

2(z) + 2γ3,zz(z)∂zb
3,z(z) + ∂zγ3,zz(z)b

3,z(z)

−γ1,z(z)∂z [γ2,z(z)b
3,z(z)], (2.108)

such that

TW3(z) = −1

2

(
(∂zϕ1(z))

2 + (∂zϕ2(z))
2 +

i2(k′ + 2)√
2k′ + 6

∂2
zϕ1(z)

)
, (2.109)

in which the γ’s and ϕ’s are just auxillary fields which satisfy the OPE’s of a free

βγ and free scalar system respectively. It can be shown [26] that TW3(z), together

with a spin-three field T
(3)
W3

(z) which is a higher-spin analog of TW3(z), will satisfy

the free boson realisation of a closed W3 OPE algebra with the same central charge

c = 2−24(k′ +2)2/(k′ +3) = 50−24(k′ +3)−24/(k′ +3). This implies that one can always

find a spin-three observable, independent of the γ’s and ϕ’s, and composed out of the fields

in the gauged WZW model only, which is cohomologically equivalent to T
(3)
W3

(z), and which

is also non-trivial in the holomorphic BRST-cohomology of the gauged WZW model.9 Let

us denote this spin-three observable as T
(3)
total(z). Note that T

(3)
total(z) is just a spin-three

analog of Ttotal(z), and together with Ttotal(z), it will generate a W3 OPE algebra with

central charge c = 50 − 24(k′ + 3) − 24/(k′ + 3) for finite (and therefore non-classical)

values of the level k′. This observation will turn out to be consistent with our discussion

in section 3.3 where we unravel the role that the B-gauged WZW model on SL(3) plays in

a physical realisation of the DS-reduction scheme of generating a Wk′(ŝl3) OPE algebra.

Last but not least, a soon-to-be relevant point to note is that since quantum corrections

can only annihilate classes in the BRST-cohomology and not create them, the classical

counterparts of the holomorphic stress tensor Ttotal(z) and its spin-three analog T (3)(z), will

be the spin-two and spin-three fields Tclassical(z) and T
(3)
classical(z) which lie in the classical,

holomorphic BRST-cohomology (or holomorphic chiral algebra) of the B-gauged WZW

model on SL(3), where Tclassical(z) will generate a classical Virasoro transformation on the

fields, while T
(3)
classical(z) will generate a classical W3 transformation on them.

9Note that within the W3 OPE algebra, we have an OPE of the form T
(3)
W3

(z)·T
(3)
W3

(z′), which is equivalent,

up to singular terms, to a sum of the fields TW3
(z) and its partial derivatives only. These terms in the sum

are certainly BRST-closed but non-exact. Thus, in order to be consistent with the OPE, it implies that

T
(3)
W3

(z) must also be BRST-closed and non-exact.
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A duality of classical W-algebras underlying a geometric Langlands corre-

spondence for G = SL(3). Recall that the observables in the holomorphic BRST-

cohomology of the gauged WZW model that should correspond to S(z) and S(3)(z) of

the holomorphic chiral algebra of the purely bosonic, ψj̄-independent sector of the twisted

sigma-model on SL(3)/B, must have the same spins as S(z) and S(3)(z). Since S(z) gen-

erates a classical Virasoro symmetry on the worldsheet, it should correspond to a spin-two

observable in the classical, holomorphic BRST-cohomology of the B-gauged WZW model

on SL(3) which generates a classical Virasoro symmetry on the worldsheet. Since S(3)(z)

generates a classical W3 symmetry on the worldsheet, it should correspond to a spin-three

observable in the classical, holomorphic BRST-cohomology of the B-gauged WZW model

on SL(3) which generates a classical W3 symmetry on the worldsheet.

In order to ascertain the classical observable which corresponds to S(z), first recall that

the quantum definition of S(z) at k 6= −3 is given by S(z) = (k+3)T (z). Notice that since

the stress tensor T (z) also exists in the holomorphic chiral algebra of the purely bosonic, ψj̄-

independent sector of the sigma-model on SL(3)/B, it will imply that T (z) must correspond

to the stress tensor Ttotal(z) of the B-gauged WZW model on SL(3). Thus, at k 6= −3,

S(z) will correspond to T total(z) = (k+3)Ttotal(z), and at k = −3, S(z) will correspond to

the classical counterpart T classical(z) of T total(z). Note that T classical(z) lies in the classical,

holomorphic BRST-cohomology of the B-gauged WZW model on SL(3) as required - at

k = −3, T total(z), which usually exists as a quantum operator, will act by zero in its

OPE’s with any other operator, i.e., it will reduce to its classical counterpart T classical(z)

in the classical, holomorphic BRST-cohomology of the gauged WZW model. Moreover,

since the shift in 3 in the factor (k + 3) is due to a quantum effect as explained earlier,

S(z) will actually correspond to T classical(z) = −3Tclassical(z) at k = −3. Hence, S(z) will

indeed correspond to a spin-two field in the classical, holomorphic BRST-cohomology of the

B-gauged WZW on SL(3) which generates a classical Virasoro transformation of the fields.

In order to ascertain the classical observable which corresponds to S(3)(z), first recall

that the quantum definition of S(3)(z) at k 6= −3 is given by S(3)(z) = (k+3)T (3)(z). Notice

that since T (3)(z) also exists as a spin-three analog of T (z) in the holomorphic chiral algebra

of the purely bosonic, ψj̄-independent sector of the sigma-model on SL(3)/B, it will imply

that T (3)(z) must correspond to the spin-three operator Ttotal(z) of the B-gauged WZW

model on SL(3). Thus, at k 6= −3, S(3)(z) will correspond to T
(3)
total(z) = (k + 3)T

(3)
total(z),

and at k = −3, S(z) will correspond to the classical counterpart T
(3)
classical(z) of T

(3)
total(z).

Note that T
(3)
classical(z) lies in the classical, holomorphic BRST-cohomology of the B-gauged

WZW model on SL(3) as required - at k = −3, T
(3)
total(z), which usually exists as a quantum

operator, will act by zero in its OPE’s with any other operator, i.e., it will reduce to its

classical counterpart T
(3)
classical(z) in the classical, holomorphic BRST-cohomology of the

gauged WZW model. Moreover, since the shift in 3 in the factor (k+3) is due to a quantum

effect as explained earlier, S(3)(z) will actually correspond to T
(3)
classical(z) = −3T

(3)
classical(z)

at k = −3. Hence, S(3)(z) will indeed correspond to a spin-three field in the classical,

holomorphic BRST-cohomology of the B-gauged WZW on SL(3) which generates a classical

W3 transformation of the fields.
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What is the classical algebra generated by the Laurent modes of T classical(z)? To

ascertain this, first recall that the Laurent modes of Ttotal(z) generate a Virasoro algebra

of central charge c = 50−24(k′ +3)−24/(k′ +3). Hence, the Virasoro modes of Ttotal(z) =∑
n L̂nz

−n−2 will obey the following quantum commutator relation

[
L̂n, L̂m

]
= (n−m)L̂n+m +

1

12

[
50 − 24(k′ + 3) − 24/(k′ + 3)

]
(n3 − n)δn,−m. (2.110)

Therefore, the commutator relations involving the L̂n modes of T total(z) =
∑

n L̂nz
−n−2

will be given by

[
L̂n, L̂m

]
=(k+3)

[
(n−m)L̂n+m+(n3−n)δn,−m

(
50

12
(k+3)− 24(k+3)(k′+3)

12
− 2(k+3)

(k′+3)

)]
.

(2.111)

At k = −3, T total(z) will cease to have a quantum definition, and it will reduce to its clas-

sical counterpart T classical(z). Hence, the k → −3 (and k′ → ∞) limit of the commutator

relation in (2.111), can be interpreted as its classical limit. Therefore, one can view the

term (k+3) in (2.111) as the parameter i~, where ~ → 0 is equivalent to the classical limit of

the commutator relations. Since in a quantisation procedure, we go from {Ln, Lm}P.B. →
1
i~[L̂n, L̂m], going in reverse would give us the classical Poisson bracket relation

{
Ln, Lm

}
P.B.

= (n−m)Ln+m − 24

12
(k + 3)(k′ + 3)(n3 − n)δn,−m, (2.112)

where T classical(z) =
∑

n Lnz
−n−2. Since the Poisson bracket must be well-defined as

k → −3 and k′ → ∞, it will mean that (k + 3)(k′ + 3) must be equal to a finite constant

q in these limits. For different values of q, the Poisson algebra generated by the Laurent

modes of T classical(z), will be a classical Virasoro algebra with different central charge.

Note at this point that an equivalence - at the level of the holomorphic chiral algebra

- between the ψj̄-independent sector of the twisted sigma-model on SL(3)/B and the

B-gauged WZW model on SL(3), will mean that the Laurent modes of T classical(z) and

S(z) ought to generate an isomorphic classical algebra. This in turn means that the Lm’s

must generate the same classical Virasoro algebra Sym′(vir−24) with central charge −24

that is generated by the Laurent modes Sm of the purely bosonic sector of the sigma-model

on SL(3)/B. Thus, we must have q = 1, or rather (k + 3) = 1/(k′ + 3).

What is the classical algebra generated by the Laurent modes of T
(3)
classical(z)? To

ascertain this, first recall that it was argued that the Laurent modes of T
(3)
total(z) and Ttotal(z)

will together generate a quantum W3-algebra of central charge c = 50−24(k′+3)−24/(k′+

3). Hence, the Laurent modes L̂
(3)
n of T

(3)
total(z) =

∑
n L̂

(3)
n z−n−3 and the L̂n’s will obey the

following quantum commutator relations

[
L̂n, L̂

(3)
m

]
= (2n −m)L̂

(3)
n+m, (2.113)
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and
[
L̂(3)

m , L̂(3)
n

]
=

50 − 24(k′ + 3) − 24/(k′ + 3)

360
m(m2 − 1)(m2 − 4)δm,−n (2.114)

+(m− n)

(
1

15
(m+ n+ 3)(m + n+ 2) − 1

6
(m+ 2)(n + 2)

)
L̂m+n

+

(
16

22 + 5[50 − 24(k′ + 3) − 24/(k′ + 3)]

)
(m− n)

(
∑

p

L̂m+n−pL̂p

)

−
(

16

22+5[50 − 24(k′+3)−24/(k′+3)]

)
(m−n)

(
3

10
(m+n+3)(m+n+2)L̂m+n

)
.

Therefore, from (2.113) and (2.114), the commutator relations involving the L̂n modes of

T total(z) =
∑

n L̂nz
−n−2 and the L̂

(3)

n modes of T
(3)
total(z) =

∑
n L̂

(3)

n z−n−2, will be given by
[
L̂n, L̂

(3)

m

]
= (k + 3)(2n −m)L̂

(3)

n+m, (2.115)

and
[
L̂

(3)

m , L̂
(3)

n

]
=(k+3)


50(k+3)−24(k+3)(k′+3)− 24(k+3)

(k′+3)

360
m(m2−1)(m2−4)δm,−n


(2.116)

+(k + 3)

[
(m− n)

(
1

15
(m+ n+ 3)(m+ n+ 2) − 1

6
(m+ 2)(n + 2)

)
L̂m+n

]

+(k+3)




 16

22(k+3)+5
[
50(k+3)−24(k+3)(k′+3)− 24(k+3)

(k′+3)

]


(m−n)

(
∑

p

L̂m+n−pL̂p

)


−(k+3)

[(
16

22+5[50−24(k′+3)−24/(k′+3)]

)
(m−n)

(
3

10
(m+n+3)(m+n+2)L̂m+n

)]
.

At k = −3, T
(3)
total(z) will cease to have a quantum definition, and it will reduce to its

classical counterpart T
(3)
classical(z). Hence, the k → −3 (and k′ → ∞) limit of the commuta-

tor relations in (2.115) and (2.116), can be interpreted as their classical limits. Therefore,

one can view the term (k + 3) in (2.115) and (2.116) as the parameter i~, where ~ → 0

is equivalent to the classical limit of the commutator relations. Since in a quantisation

procedure, we go from {Dn,Dm}P.B. → 1
i~[D̂n, D̂m] for any classical observable Dn, going

in reverse would give us the classical Poisson bracket relations
{
Ln, L

(3)
m

}
P.B.

= (2n −m)L
(3)
n+m, (2.117)

and
{
L

(3)
m , L

(3)
n

}
P.B.

=

[−24(k + 3)(k′ + 3)

360
m(m2 − 1)(m2 − 4)δm,−n

]
(2.118)

+

[
(m− n)

(
1

15
(m+ n+ 3)(m+ n+ 2) − 1

6
(m+ 2)(n + 2)

)
Lm+n

]

+

[( −4

30(k + 3)(k′ + 3)

)
(m− n)

(
∑

p

Lm+n−pLp

)]
,
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where T
(3)
classical(z) =

∑
n L

(3)
n z−n−3. Since the Poisson bracket in (2.118) must be well-

defined as k → −3 and k′ → ∞, it will mean that (k + 3)(k′ + 3) must be equal to a finite

constant q in these limits. For different values of q, the total Poisson algebra generated by

the Laurent modes of T classical(z) and T
(3)
classical(z) in (2.112), (2.117) and (2.118), will be a

classical W3-algebra with different central charges. Note at this point that an equivalence

- at the level of the holomorphic chiral algebra - between the ψj̄-independent sector

of the twisted sigma-model on SL(3)/B and the B-gauged WZW model on SL(3), will

mean that the Laurent modes of (T classical(z), T
(3)
classical(z)) and (S(z), S(3)(z)) ought to

generate an isomorphic classical algebra. This means that we must have q = 1, or rather

(k + 3) = 1/(k′ + 3), so that the total Poisson algebra will be given by

{
Ln, Lm

}
P.B.

= (n−m)Ln+m − 24

12
(n3 − n)δn,−m, (2.119)

{
Ln, L

(3)
m

}
P.B.

= (2n−m)L
(3)
n+m, (2.120)

and
{
L

(3)
m , L

(3)
n

}
P.B.

= − 24

360
m(m2 − 1)(m2 − 4)δm,−n (2.121)

+(m− n)

(
1

15
(m+ n+ 3)(m+ n+ 2) − 1

6
(m+ 2)(n + 2)

)
Lm+n

− 4

30
(m− n)

(
∑

p

Lm+n−pLp)

)
,

the classical W3-algebra with central charge −24 generated by the Laurent modes Sm and

S
(3)
m in in (2.91), (2.89) and (2.90). Note also that this algebra coincides with W∞(ŝl3),

the classical W-algebra associated to ŝl3 at level k′ → ∞ obtained via a DS reduction

scheme [7]. Since the Sm’s and S
(3)
m ’s which correspond respectively to the Ln’s and L

(3)
m ’s

span z(ŝl3), and since for g = sl3 = Lg, we have h∨ = Lh
∨

= 3, and r∨ = 1, where r∨ is

the lacing number of g, we see that an equivalence - at the level of the holomorphic chiral

algebra - between the ψj̄-independent sector of the twisted sigma-model on SL(3)/B and

the B-gauged WZW model on SL(3), will imply an isomorphism of Poisson algebras

z(ĝ) ∼= W∞(Lĝ), (2.122)

and the level relation

(k + h∨)r∨ =
1

(k′ + Lh∨)
. (2.123)

Note at this point that the purely bosonic, ψj̄-independent sector of the twisted sigma-

model on SL(3)/B, can be described, via (2.31), by a bosonic string on SL(3)/B. On the

other hand, note that since a bosonic string on a group manifold G can be described as a

WZW model onG, it will mean that theB-gauged WZW model on SL(3) can be interpreted

as a B-gauged bosonic string on SL(3). Thus, we see that an equivalence, at the level of the

holomorphic chiral algebra, between a bosonic string on SL(3)/B and a B-gauged version

of itself on SL(3) - a statement which stems from the ubiquitous notion that one can always

– 36 –



J
H
E
P
0
3
(
2
0
0
8
)
0
3
3

physically interpret a geometrical symmetry of the target space as a gauge symmetry in the

worldsheet theory - will imply an isomorphism of classical W-algebras and a level relation

which underlie a geometric Langlands correspondence for G = SL(3)! Notice also that the

correspondence between the k → −3 and k′ → ∞ limits (within the context of the above

Poisson algebras) is indeed consistent with the relation (2.123). These limits define a “clas-

sical” geometric Langlands correspondence. A “quantum” generalisation of the correspon-

dence for SL(3) can be defined for other values of k and k′ that satisfy the relation (2.123),

but with the isomorphism of (2.122) replaced by an isomorphism of quantum W-algebras

(derived from a DS-reduction scheme) associated to ŝl3 at levels k and k′ respectively [6].

3. An equivalence of classical holomorphic chiral algebras and the geo-

metric Langlands correspondence for G = SL(N)

We shall now proceed to show that our observations in section 2 for G = SL(2) and SL(3)

can be extended to any G = SL(N).

To this end, we shall first discuss the twisted sigma-model on SL(N)/B, and elaborate

on the higher-order Casimir invariant operators which generalise the Segal-Sugawara ten-

sor S(z) to higher-spin analogs of itself that we will denote as S(3)(z), S(4)(z), . . . , S(N)(z).

We shall show that S(z), S(3)(z), S(4)(z), . . . , S(N)(z) have Laurent modes which generate

the centre z(ŝlN ) of the completed universal enveloping algebra of ŝlN at the critical level

k = −h∨, where a module of ŝlN at k = −h∨ is always furnished by the global sections

of the sheaf of CDO’s on SL(N)/B corresponding to local operators in the quantum holo-

morphic chiral algebra of the twisted sigma-model on SL(N)/B. We shall also show that

S(z), S(3)(z), S(4)(z), . . . , S(N)(z) exist only in the classical holomorphic chiral algebra of

the purely bosonic sector of the twisted sigma-model on SL(N)/B, and that moreover,

their Laurent modes which span z(ŝlN ) - an ingredient which furnishes the left-hand side

of the W-algebra duality - will generate a classical WN -algebra.

Next, we shall show that the holomorphic BRST-cohomology of the B-gauged WZW

model on SL(N) at level k′ introduced in section 2.2 actually furnishes a physical realisation

of the algebraic DS reduction scheme that defines the set of fields with spins 2, 3, . . . N

whose Laurent modes generate Wk′(ŝlN ), the W-algebra associated to some affine Lie

algebra ŝlN at level k′. Consequently, the classical, holomorphic BRST-cohomology of the

B-gauged WZW model on SL(N) will reproduce the holomorphic classical fields with spins

2, 3, . . . , N that have Laurent modes which generate the Poisson algebra W∞(ŝlN ), the

classical W-algebra from the DS-reduction scheme in the limit of k′ → ∞ - an ingredient

which furnishes the right-hand side of the W-algebra duality.

Finally, we shall show that that an equivalence, at the level of the holomorphic chiral

algebra, between a bosonic string on SL(N)/B and a B-gauged version of itself on SL(N) - a

statement which stems from the ubiquitous notion that one can always physically interpret

a geometrical symmetry of the target space as a gauge symmetry in the worldsheet theory

- will imply an isomorphism of classical W-algebras and a level relation which underlie a

geometric Langlands correspondence for G = SL(N).
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3.1 The twisted sigma-model on SL(N)/B and its classical holomorphic chiral

algebra

Now, let us take X = SL(N)/B, where B is the subgroup of upper triangular matrices

of SL(3) with a nilpotent Lie algebra b. Note that one can cover X with N ! open charts

Uw where w = 1, 2, . . . , N !, such that each open chart Uw can be identified with the affine

space CN(N−1)/2. Hence, the sheaf of CDO’s in any Uw can be described by N(N − 1)/2

free βγ systems with the action

I =

N(N−1)/2∑

i=1

1

2π

∫
|d2z| βi∂z̄γ

i. (3.1)

As before, the βi’s and γi’s are fields of dimension (1, 0) and (0, 0) respectively. They

obey the standard free-field OPE’s; there are no singularities in the operator products

βi(z) · βi(z
′) and γi(z) · γi(z′), while

βi(z)γ
j(z′) ∼ − δj

i

z − z′
. (3.2)

Similarly, the sheaf of CDO’s in a neighbouring intersecting chart Uw+1 is described

by N(N − 1)/2 free β̃γ̃ systems with action

I =

N(N−1)/2∑

i=1

1

2π

∫
|d2z| β̃i∂z̄ γ̃

i, (3.3)

where the β̃i and γ̃i fields obey the same OPE’s as the βi and γi fields. In other words,

the non-trivial OPE’s are given by

β̃i(z)γ̃
j(z′) ∼ − δj

i

z − z′
. (3.4)

In order to describe a globally-defined sheaf of CDO’s, one will need to glue the free

conformal field theories with actions (3.1) and (3.3) in the overlap region Uw∩Uw+1 for every

w = 1, 2, . . . N !, where U1+N ! = U1. To do so, one must use the admissible automorphisms

of the free conformal field theories defined in (A.29)–(A.30) to glue the free-fields together.

In the case of X = SL(N)/B, the relation between the coordinates in Uw and Uw+1

will mean that the γ̃i’s in Uw+1 will be related to the γi’s in Uw via the relation [γ̃] =

[Vw+1]
−1[Vw][γ], where the [N(N − 1)/2] × [N(N − 1)/2] matrices [Vw+1] and [Vw] are

realisations of the SN permutation subgroup of GL(N) associated to the open charts Uw+1

and Uw respectively, and [γ] is a [N(N − 1)/2] × 1 column matrix with the γi’s as entries.

By substituting this relation between the γ̃i’s and γi’s in (A.29)–(A.30), one will have the

admissible automorphisms of the fields, which can then be used to glue together the local

sheaves of CDO’s in the overlap region Uw ∩Uw+1 for every w = 1, 2, . . . , N !. These gluing

relations for the free fields can be written as

γ̃i =
[
V −1

w+1 · Vw

]i
j γ

j , (3.5)

β̃i = βkD
k
i + ∂zγ

jEij, (3.6)
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where i, j, k = 1, 2, . . . , N(N − 1)/2. Here, D and E are [N(N − 1)/2] × [N(N − 1)/2]

matrices, whereby [(DT )−1]i
k = ∂i[V

−1
w+1 · Vw]kj γ

j and [E]ij = ∂iBj . It can be verified

that β̃ and γ̃ obey the correct OPE’s amongst themselves. Moreover, let Rw represent a

transformation of the fields in going from Uw to Uw+1. One can indeed verify that there is no

anomaly to a global definition of a sheaf of CDO’s onX = SL(N)/B - a careful computation

will reveal that one will get the desired composition maps (RN ! . . . R4R3R2R1) · γj = γj

and (RN ! . . . R4R3R2R1) · βi = βi. Again, this is just a statement that one can always

define a sheaf of CDO’s on any flag manifold SL(N)/B [11].

Global sections of the Sheaf of CDO’s on X = SL(N)/B. Since X = SL(N)/B

is of complex dimension N(N − 1)/2, the chiral algebra A will be given by A =⊕gR=N(N−1)/2
gR=0 HgR(X, Ôch

X ) as a vector space. As before, it would suffice for our pur-

pose to concentrate on just the purely bosonic sector of A - from our Q+-Cech cohomology

dictionary, this again translates to studying only the global sections in H0(X, Ôch
X ).

According to theorem 5.13 of [11], one can always find elements in H0(M, Ôch
M ) for any

flag manifold M = SL(N)/B, that will furnish a module of an affine SL(N) algebra at the

critical level. This means that one can always find dimension one global sections of the

sheaf Ôch
X that correspond to ψī-independent currents Ja(z) for a = 1, 2, . . . dim slN , that

satisfy the OPE’s of an affine SL(N) algebra at the critical level k = −h∨:

Ja(z)Jb(z
′) ∼ − h∨dab

(z − z′)2
+
∑

c

fab
c Jc(z

′)

(z − z′)
, (3.7)

where h∨ is the dual Coxeter number of the Lie algebra slN , and dab is its Cartan-Killing

metric.10 Since these are global sections, it will be true that J̃a(z) = Ja(z) on any Uw∩Uw+1

for all a. Moreover, from our Q+-Cech cohomology dictionary, they will be Q+-closed

chiral vertex operators that are holomorphic in z, which means that one can expand them

in a Laurent series that allows an affinisation of the SL(N) algebra generated by their

resulting zero modes. The space of these operators obeys all the physical axioms of a

chiral algebra except for reparameterisation invariance on the z-plane or worldsheet Σ. We

will substantiate this last statement next by showing that the holomorphic stress tensor

fails to exist in the Q+-cohomology at the quantum level. Again, this observation will be

important in our discussion of a geometric Langlands correspondence for G = SL(N).

The Segal-Sugawara tensor and the classical holomorphic chiral algebra. Recall

that for any affine algebra ŝlN at level k 6= −h∨, one can construct the corresponding stress

10Note that one can consistently introduce appropriate fluxes to deform the level away from −h∨ - recall

from our discussion in section A.7 that the Eij = ∂iBj term in (3.6) is related to the fluxes that correspond

to the moduli of the chiral algebra, and since this term will determine the level k of the affine SL(N)

algebra via the identification of the global sections β̃i with the affine currents valued in the subalgebra of

slN associated to its positive roots, turning on the relevant fluxes will deform k away from −h∨. Henceforth,

whenever we consider k 6= −h∨, we really mean turning on fluxes in this manner. This point of departure will

be important in a forthcoming paper where we aim to investigate the physical interpretation of a“quantum”

geometric Langlands correspondence in the context of CDO’s.
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tensor out of the currents of ŝlN via a Segal-Sugawara construction [16]:

T (z) =
: dabJaJb(z) :

k + h∨
, . (3.8)

As required, for every k 6= −h∨, the modes of the Laurent expansion of T (z) will span a

Virasoro algebra. In particular, T (z) will generate holomorphic reparametrisations of the

coordinates on the worldsheet Σ. Notice that this definition of T (z) in (3.8) is ill-defined

when k = −h∨. Nevertheless, one can always associate T (z) with the Segal-Sugawara

operator S(z) that is well-defined at any finite level, whereby

S(z) = (k + h∨)T (z), (3.9)

and

S(z) = : dabJaJb(z) :. (3.10)

From (3.9), we see that S(z) generates, in its OPE’s with other field operators, (k + h∨)

times the transformations usually generated by the stress tensor T (z). Therefore, at the

level k = −h∨, S(z) generates no transformations at all - its OPE’s with all other field op-

erators are trivial. This is equivalent to saying that the holomorphic stress tensor does not

exist at the quantum level, since S(z), which is the only well-defined operator at this level

that could possibly generate the transformation of fields under an arbitrary holomorphic

reparametrisation of the worldsheet coordinates on Σ, acts by zero in the OPE’s.

Despite the fact that S(z) will cease to exist in the spectrum of physical operators

associated to the twisted sigma-model on X = SL(N)/B at the quantum level, it

will nevertheless exist as a field in its classical Q+-cohomology or holomorphic chiral

algebra. One can convince oneself that this is true as follows. Firstly, from our Q+-Cech

cohomology dictionary, since the Ja(z)’s are in H0(X, Ôch
X ), it will mean that they are in

the Q+-cohomology of the sigma-model at the quantum level. Secondly, since quantum

corrections can only annihilate cohomology classes and not create them, it will mean that

the Ja(z)’s will be in the classical Q+-cohomology of the sigma-model, i.e., the currents

are Q+-closed and are therefore invariant under the transformations generated by Q+ in

the absence of quantum corrections. Hence, one can readily see that S(z) in (3.10) will

also be Q+-closed at the classical level. Lastly, recall from section 2.3 that [Q+, T (z)] = 0

such that T (z) 6= {Q+, . . .} in the absence of quantum corrections to the action of Q+ in

the classical theory. Note also that the integer h∨ in the factor (k + h∨) of the expression

S(z) in (3.9), is due to a shift by h∨ in the level k because of quantum renormalisation

effects [17], i.e., the classical expression of S(z) for a general level k can actually be

written as S(z) = kT (z), and therefore, one will have [Q+,−h∨T (z)] = [Q+, S(z)] = 0,

where S(z) 6= {Q+, . . .} in the classical theory. Therefore, S(z) will be a spin-two field

in the classical holomorphic chiral algebra of the purely bosonic sector of the twisted

sigma-model on X = SL(N)/B. This observation is also consistent with the fact that S(z)

fails to correspond to a global section of the sheaf Och
X of CDO’s - note that in our case,

we actually have S(z) = −h∨T (z) in the classical theory, and this will mean that under

quantum corrections to the action of Q+, we will have [Q+, Szz] = −h∨∂z(Rij̄∂zφ
iψj̄) 6= 0
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(since Rij̄ 6= 0 for any flag manifold SL(N)/B), which corresponds in the Cech cohomology

picture to the expression
˜̂
S(z) − Ŝ(z) 6= 0, i.e., Ŝ(z), the Cech cohomology counterpart to

the S(z) operator, will fail to be in H0(X, Ôch
X ). Consequently, one can always represent

S(z) by a classical c-number. This point will be important when we discuss how one can

define Hecke eigensheaves that will correspond to flat LG-bundles on a Riemann surface Σ

in our physical interpretation of the geometric Langlands correspondence for G = SL(N).

The fact that S(z) acts trivially in any OPE with other field operators implies that

its Laurent modes will commute with the Laurent modes of any of these other field op-

erators; in particular, they will commute with the Laurent modes of the Ja(z) currents -

in other words, the Laurent modes of S(z) will span the centre z(ŝlN ) of the completed

universal enveloping algebra of the affine SL(N) algebra ŝlN at the critical level k = −h∨
(generated by the Laurent modes of the Ja(z) currents in the quantum chiral algebra of

the twisted sigma-model on SL(N)/B). Notice also that S(z) is ψj̄-independent and is

therefore purely bosonic in nature. In other words, the local field S(z) exists only in the

classical holomorphic chiral algebra of the purely bosonic (or ψj̄-independent) sector of the

twisted sigma-model on X = SL(N)/B.

A classical Virasoro algebra. Note that since S(z) is holomorphic in z and is of

conformal dimension two, one can expand it in terms of a Laurent expansion as

S(z) =
∑

n∈Z

Ŝnz
−n−2. (3.11)

Recall that for the general case of k 6= −h∨, a quantum definition of S(z) exists, such that

the Ŝn modes of the Laurent expansion can be related to the Ja,n modes of the ŝlN currents

through the quantum commutator relations

[Ŝn, Ja,m] = −(k + h∨)mJa,n+m, (3.12)

[Ŝn, Ŝm] = (k + h∨)

(
(n −m)Ŝn+m +

k dim slN

12
(n3 − n) δn,−m

)
, (3.13)

where a = 1, 2, . . . ,dim slN . If we now let k = −h∨, we will have [Ŝn, Ja,m] = [Ŝn, Ŝm] = 0 -

the Sm’s thus generate the (classical) centre of the completed universal enveloping algebra

of ŝlN as mentioned above.

Since we now understand that S(z) must be a holomorphic classical field at k = −h∨,

let us rewrite the Laurent expansion of S(z) as

S(z) =
∑

n∈Z

Snz
−n−2 (3.14)

so as to differentiate the classical modes of expansion Sn from their quantum counterpart

Ŝn in (3.9). Unlike the Ŝn’s which obey the quantum commutator relations in (3.13) for

an arbitrary level k 6= −h∨, the Sn’s, being the modes of a Laurent expansion of a classical

field, will instead obey Poisson bracket relations that define a certain classical algebra

when k = −h∨.
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Based on our arguments thus far, we learn that the quantum version of S(z) as ex-

pressed in (3.9), must reduce to its classical counterpart as expressed in (3.14), when

k = −h∨. In other words, one can see that by taking (k + h∨) → 0, we are going to the

classical limit. This is analogous to taking the ~ → 0 limit in any quantum mechanical

theory whenever one wants to ascertain its classical counterpart. In fact, by identifying

(k+h∨) with i~, and by noting that one must make the replacement from Possion brackets

to commutators via {Sn, Sm}P.B. → 1
i~[Ŝn, Ŝm] in quantising the Sn’s into operators, we

can ascertain the classical algebra generated by the Sn’s from (3.13) as

{Sn, Sm}P.B. = (n−m)Sn+m − h∨(dimslN )

12
(n3 − n) δn,−m. (3.15)

Since we have the classical relation S(z) ∼ T (z), it means that we can interpret the Sn

modes as the Virasoro modes of the Laurent expansion of the classical stress tensor field

T (z). In other words, the Sn’s generate a classical Virasoro algebra with central charge

−h∨(dimslN ) as given by (3.15). This is can be denoted mathematically as the Virasoro

Poisson algebra Sym′(vir−h∨·dimslN ).

Higher-spin analogs of the Segal-Sugawara tensor and the classical holomorphic

chiral algebra. For an affine SL(N) algebra where N > 2, one can generalise the

Sugawara formalism to construct higher-spin analogs of the holomorphic stress tensor

with the currents. These higher-spin analogs are called Casimir operators, and were first

constructed in [25].

In the context of an affine SL(N) algebra with a module that is furnished by the global

sections of the sheaf of CDO’s on X = SL(N)/B, a spin-si analog of the holomorphic stress

tensor will be given by the si
th-order Casimir operator [12]

T (si)(z) =
: d̃a1a2a3...asi (k)(Ja1Ja2 . . . Jasi

)(z) :

k + h∨
, (3.16)

where d̃a1a2a3...asi (k) is a completely symmetric traceless slN -invariant tensor of rank si that

depends on the level k of the affine SL(N) algebra. It is also well-defined and finite at k =

−h∨. The superscript on T (si)(z) just denotes that it is a spin-si analog of T (z). Note that

i = 1, 2, . . . , rank(slN ), and the spins si can take the values 1+ei, where ei = 1, 2, . . . , N−1.

Thus, one can have rank(slN ) of these Casimir operators, and the spin-2 Casimir operator

is just the holomorphic stress tensor from the usual Sugawara construction.

As with T (z) in (3.8), T (si)(z) is ill-defined when k = −h∨. Nevertheless, one can

always make reference to a spin-si analog of the Segal-Sugawara tensor S(si)(z) that is

well-defined for any finite value of k, where its relation to T (si)(z) is given by

S(si)(z) = (k + h∨)T (si)(z), (3.17)

and

S(si)(z) =: d̃a1a2a3...asi (k)(Ja1Ja2 . . . Jasi
)(z) : . (3.18)

That is, the operator S(si)(z) generates in its OPE’s with all other operators of the quantum

theory, (k + h∨) times the field transformations typically generated by T (si)(z).
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Notice however, that at k = −h∨, S(si)(z) acts by zero in its OPE with any other

operator. This is equivalent to saying that T (si)(z) does not exist as a quantum operator

at all, since the only well-defined operator S(si)(z) which is supposed to generate the field

transformations associated to T (si)(z), act by zero and thus generate no field transforma-

tions at all. From our Q+-Cech cohomology dictionary, this means that the ψī-independent

operator T (si)(z) will fail to correspond to a dimension si global section of Ôch
X . Since we

have, at the classical level, the relation S(si)(z) = −h∨T (si)(z), it will mean that S(si)(z)

will also fail to correspond to a dimension si global section of Ôch
X . Thus, S(si)(z) will fail to

be an operator at the quantum level. Is it even a spin-si field in the classical holomorphic

chiral algebra of the twisted sigma-model on SL(N)/B, one might ask. The answer is yes.

To see this, recall that each of the Jak
(z)’s are separately Q+-invariant and not Q+-exact

at the classical level. Therefore, the classical counterpart of S(si)(z) in (3.18) must also

be such, which in turn means that it will be in the classical Q+-cohomology and hence

classical chiral algebra of the twisted sigma-model on SL(N)/B.

The fact that the S(si)(z)’s act trivially in any OPE with other field operators implies

that their Laurent modes will commute with the Laurent modes of any other operator;

in particular, they will commute with the Laurent modes of the currents Ja(z) for a =

1, 2, . . . ,dimslN - in other words, the Laurent modes of all rank(slN ) of the S(si)(z) fields

will span fully the centre z(ŝlN ) of the completed universal enveloping algebra of ŝlN at

the critical level k = −h∨ (which is in turn generated by the Laurent modes of the Ja(z)

currents of the quantum chiral algebra of the twisted sigma-model on SL(N)/B). Last but

not least, notice that the S(si)(z) fields are also ψj̄-independent and are therefore purely

bosonic in nature. In other words, the local fields S(si)(z), for i = 1, 2, . . . rank(slN ), whose

Laurent modes will together generate z(ŝlN ), exist only in the classical holomorphic chiral

algebra of the purely bosonic (or ψj̄-independent) sector of the twisted sigma-model on

X = SL(N)/B.

A classical WN-algebra. For an affine SL(N) algebra at an arbitrary level k 6= −h∨,

as in the case of S(z) discussed earlier, a quantum definition of S(si)(z) exists. In fact, con-

sider the following operators given by S
(si)(z) = η(si)(N) : da1a2...asi (Ja1Ja2 . . . Jasi

)(z) :

for i = 1, 2, . . . , rank(slN ), where η(si)(N) is just a normalisation that depends on N ,

and da1a2...asi is just a rank-si extension of dab. It can be shown that the S
(si)(z)’s

generate a closed Casimir OPE algebra which is isomorphic to a particular WN OPE

algebra [25]. This implies that for k 6= −h∨, every S
(si)(z) and therefore every

S(si)(z) ∼: da1a2...asi (Ja1Ja2 . . . Jasi
)(z) :, will exist as a quantum operator in some co-

homology - the Q+-cohomology in this instance. This will in turn mean that the set of

S(si)(z) = (k+h∨)T (si)(z) operators must also span a closed OPE algebra that is equivalent

- at the level of Q+-cohomology - to this Casimir OPE algebra, when k 6= −h∨. Since we

know that for k 6= −h∨, T (2)(z) = T (z) will generate a Virasoro subalgebra of a closed WN

OPE algebra with central charge c = k dim(slN )/(k+ h∨), it will imply that the S(si)(z)’s

will satisfy a rescaled (by a factor of (k + h∨)) version of a closed WN OPE algebra at

c = k dim(slN )/(k + h∨) for k 6= −h∨. Because each S(si)(z) is holomorphic in z, we can
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Laurent expand it as

S(si)(z) =
∑

n∈Z

Ŝ(si)
n z−n−si . (3.19)

At k 6= −h∨, since S(2)(z) = S(z), the Laurent modes Ŝ
(2)
n of S(2)(z), will then generate

the Virasoro algebra with the following quantum commutator relations given in (3.13):

[
Ŝ(2)

n , Ŝ(2)
m

]
= (k + h∨)

(
(n −m)Ŝ

(2)
n+m +

k dim slN

12
(n3 − n) δn,−m

)
. (3.20)

Likewise, the Laurent modes of the other spin-si operators S(si)(z) will generate (up to a

factor of (k+h∨) like in (3.20)) the quantum commutator relations of a WN algebra. Since

we shall not need to refer explicitly to these relations in our following discussion, we shall

omit them for brevity, as they tend to get very elaborate for N ≥ 4.

Now let us consider the case when k = −h∨. From our earlier explanations about the

nature of the S(si)(z) operators, we find that they will cease to exist as quantum operators

at k = −h∨. Since we understand that the S(si)(z)’s must be holomorphic classical fields

at k = −h∨, we shall rewrite the Laurent expansion of S(si)(z) as

S(si)(z) =
∑

n∈Z

S(si)
n z−n−si , (3.21)

so as to differentiate the classical modes of expansion S
(si)
n from their quantum counterpart

Ŝ
(si)
n in (3.19). Unlike the Ŝ

(si)
n ’s which obey the quantum commutator relations of a WN -

algebra for an arbitrary level k 6= −h∨, the S
(si)
n ’s, being the modes of a Laurent expansion

of a classical field, will instead obey Poisson bracket relations that define a certain classical

algebra at k = −h∨. Since every Ŝ
(si)
n must reduce to its classical counterpart S

(si)
n at

k = −h∨, one can see that by taking (k + h∨) → 0, we are actually going to the classical

limit. This is analogous to taking the ~ → 0 limit in any quantum mechanical theory

whenever one wants to ascertain its classical counterpart. In fact, by identifying (k + h∨)

with i~, and by noting that one must make the replacement from Possion brackets to

commutators via {E(si)
n , E

(sj)
m }P.B. → 1

i~[Ê
(si)
n , Ê

(sj)
m ] in quantising any classical mode E

(si)
n

into an operator Ê
(si)
n , we can ascertain the classical algebra generated by the S

(si)
n ’s from

the WN -algebra commutator relations that they satisfy. Since the S(si)(z) fields all lie

in the classical Q+-cohomology of the twisted sigma-model on SL(N)/B, it will mean

that their Laurent modes S
(si)
n will generate a closed, classical algebra as well.11 In fact,

they will generate a closed classical WN -algebra. In order to ascertain the central charge of

this classical WN -algebra, it suffices to determine the central charge of its classical Virasoro

subalgebra generated by the S
(2)
m ’s. From (3.20), we find that as k → −h∨, the S

(2)
m ’s satisfy

{
S(2)

n , S(2)
m

}
P.B.

= (n−m)S
(2)
n+m − h∨ dim slN

12
(n3 − n) δn,−m, (3.22)

11Note at this point that if O and O′ are non-exact, Q-closed observables in some Q-cohomology, i.e.,

{Q,O} = {Q,O′} = 0, then {Q,OO′} = 0. Moreover, if {Q,O} = 0, then O{Q,W} = {Q,OW} for any

observable W . These two statements mean that the cohomology classes of observables that commute with

Q form a closed and well-defined algebra.
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the classical Virasoro algebra with central charge c = −h∨dim(slN ). Hence, the S
(si)
n ’s

will generate a classical WN -algebra with central charge c = −h∨dim(slN ). Indeed for the

case of g = sl2 as analysed in section 2.2, the modes S
(2)
m was shown to generate a classical

W2-algebra with central charge c = −h∨dim(sl2) = −6, where h∨ = 2 and dim(sl2) = 3.

Likwise for the case of g = sl3 as analysed in section 2.3, the modes S
(2)
m and S

(3)
m was

shown to generate a classical W3-algebra with central charge c = −h∨dim(sl2) = −24,

where h∨ = 3 and dim(sl3) = 8.

Last but not least, recall that the Laurent modes of the S(si)(z) fields for i = 1, 2, . . .

rank(slN ), will together generate z(ŝlN ), the centre of the completed universal enveloping

algebra of the affine SL(N) algebra ŝlN at the critical level k = −h∨. If we denote the

classical WN -algebra with central charge c = −h∨dim(slN ) as WN (−h∨dim(slN )), we will

have an identification of Poisson algebras z(ŝlN ) ≃ WN (−h∨dim(slN )).

3.2 W-algebras from an algebraic Drinfeld-Sokolov reduction scheme

We shall now review a purely algebraic approach to generating Wk′(ŝlN ), the W-algebra

associated to the affine SL(N) algebra ŝlN at level k′. This approach is known as the

quantum Drinfeld-Sokolov (DS) reduction scheme [6, 27].

In general, the quantum DS-reduction scheme can be summarised as the following

steps. Firstly, one starts with a triple (ĝ, ĝ′, χ), where ĝ′ is an affine subalgebra of ĝ

at level k′, and χ is a 1-dimensional representation of ĝ′. Next, one imposes the first

class constraints g ∼ χ(g) , ∀g ∈ ĝ′, via a BRST procedure. The cohomology of the

BRST operator Q on the set of normal-ordered expressions in currents, ghosts and

their derivatives, is what is called the Hecke algebra H i
Q(ĝ, ĝ′, χ) of the triple (ĝ, ĝ′, χ).

For generic values of k′, the Hecke algebra vanishes for i 6= 0, and the existing zeroth

cohomology H0
Q(ĝ, ĝ′, χ), is just spanned by a set of local operators associated to the

triple (ĝ, ĝ′, χ), whose Laurent modes generate a closed W-algebra. We shall denote the

W-algebra associated with this set of operators as WDS[ĝ, ĝ
′, χ]. Note that WDS[ŝlN , ŝl

′

N , χ]

is just Wk′(ŝlN ), the W-algebra associated to ŝlN at level k′ whose quantum and classical

limits we encountered in section 2 for N = 2, 3. Let us be more explicit about how one

can go about defining WDS[ĝ, ĝ
′, χ] and therefore Wk′(ŝlN ), now that we have sketched

the general idea behind the DS-reduction scheme.

In order for WDS[ĝ, ĝ
′, χ] to be a W-algebra, one has to suitably choose the triple

(ĝ, ĝ′, χ). A suitable triple can be obtained by considering a principal sl2 embedding in g.

Let us now describe this embedding. Suppose we have an sl2 subalgebra {t3, t+, t−} of g.

The adjoint representation of g decomposes into sl2 representations of spin jk , k = 1, . . . , s,

for example. Then, one may write the ĝ current J(z) =
∑dimg

a Ja(z)ta as

J(z) =
s∑

k=1

jk∑

m=−jk

Jk,m(z)tk,m (3.23)

where tk,m corresponds to the generator of spin jk and isospin m under the sl2 subalgebra.

In particular, we have the correspondences t1,1 = t+, t1,0 = t3 , and t1,−1 = t−. The sl2

subalgebra t3, t+, t− can be characterized by a “dual Weyl vector” ρ∨, i.e., for α ∈△+,
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where △+ is the set of positive roots of g, we have (ρ∨, α) = 1 if and only if α is a simple

root of g. The sl2 root α̂ is given by α̂ = ρ/(ρ, ρ), and t3 = ρ · c, where c is the Cartan

sublagebra of g.

Take ĝ′ to be the affine Lie subalgebra n̂+ generated by all Jk,m(z),m > 0. Denoting

the currents corresponding to positive roots α by Jα(z), and choosing t1,1 =
∑

i e
αi , one

can then impose the condition (which realises the required first-class constraint g ∼ χ(g))

χDS(J
α(z)) = 1 (forsimpleroots αi, ), χ(Jα(z)) = 0 (otherwise). (3.24)

Next, we introduce pairs of ghost fields (bα(z), cα(z)), one for every positive root

α ∈△+. By definition, they obey the OPE bα(z)cβ(z′) ∼ δαβ/(z − z′), where the α, β

(and γ) indices run over the basis of n+. The BRST operator that is consistent with (3.24)

will then be given by Q = Q0 +Q1, where

Q0 =

∮
dz

2πi

(
Jα(z)cα(z) − 1

2
fαβ

γ (bγcαcβ)(z)

)
(3.25)

is the standard differential associated to n̂+, fαβ
γ are the structure constants of n+, and

Q1 = −
∮

dz

2πi
χDS(J

α(z))cα(z). (3.26)

They satisfy

Q2 = Q2
0 = Q2

1 = {Q0, Q1} = 0. (3.27)

The resultingQ-cohomology is just the Hecke algebraH0
Q(ĝ, ĝ′, χ), which is spanned by a set

of local operators whose Laurent modes generate WDS[ĝ, ĝ
′, χ] = Wk′(ĝ). Note that (3.27)

implies that one can compute the Hecke algebra via a spectral sequence of a double complex

with differentials being Q0 and Q1 accordingly - this strategy has indeed been employed

in [28] to compute explicitly the generators of the W2 = Wk′(ŝl2) and W3 = Wk′(ŝl3) OPE

algebras with central charges c = 13−6(k′+2)−6/(k′+2) and c = 50−24(k′+3)−24/(k′+3)

respectively. We shall have more to say about these W-algebras shortly.

The variation of the various fields under the action of Q can also be computed using

the OPE’s of the affine algebra ĝ, the OPE’s of the ghost fields, and the explicit forms of

Q0 and Q1 in (3.25) and (3.26) above, and they are given by

δcα(z) = −1

2
fβγ

α (cβcγ)(z), (3.28)

δbα(z) = Jα(z) − χDS(Jα(z)) − fαβ
γ (bγcβ)(z). (3.29)

Note also that WDS[ĝ, ĝ′, χ] and thus Wk′(ĝ), will at least contain the Virasoro algebra.

The explicit form of the stress tensor whose Laurent modes will generate the Virasoro

algebra is (after omitting the normal-ordering symbol)

TDS(z) =
dabJ

a(z)Jb(z)

(k′ + h∨)
+

dimc∑

c=1

∂zJ
c(z) +

∑

α∈△+

((ρ∨, α) − 1)bα∂zcα(z) + (ρ∨, α)(∂zb
αcα)(z),

(3.30)
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where the Jc(z)’s are just the affine currents that are valued in the Cartan subalgebra c of

the Lie algebra g. Note that with respect to TDS(z), the conformal dimensions of the pair

(bα(z), cα(z)) will be given by (1 − (ρ∨, α), (ρ∨, α)). The central charge of this Virasoro

subalgebra and therefore that of Wk′(ĝ), will be given by

c =
k′dimg

(k′ + h∨)
− 12k′|ρ∨|2 − 2

∑

α∈△+

(
6(ρ∨, α)2 − 6(ρ∨, α) + 1

)
. (3.31)

3.3 The B-gauged WZW model on SL(N) and the algebraic Drinfeld-Sokolov

reduction scheme

The Wk′(ŝl2) algebra from the DS-reduction scheme. Note that from (3.31), for

g = sl2, where dim(sl2) = 3, h∨ = 2, ρ∨ = ρ, |ρ∨|2 = 1/2, and (ρ∨, α) = 1, we find that

the central charge of the resulting algebra Wk′(ŝl2) generated by the Laurent modes of the

local operators that span the Q-cohomology, will be given by c = 3k′/(k′ + 2) − 6k′ − 2 =

13 − 6(k′ + 2) − 6/(k′ + 2). This is exactly the W-algebra that the Laurent modes of the

Ttotal(z) operator which span the holomorphic BRST-cohomology of the B-gauged WZW

model on SL(2), generate.

In addition, for g = sl2, we have from (3.30), the stress tensor

TDS(z) = TSL(2) + ∂zJ
1(z) + (∂zb

1)(c1)(z), (3.32)

where the conformal dimensions of (b1, c1) are (0, 1) respectively. Thus, we see that TDS(z)

is exactly Ttotal(z) of the B-gauged WZW model on SL(2), and that moreover, the ghost

fields (b1, c1) of the DS-reduction scheme have the same conformal dimensions as the (b1, c1z)

ghost fields of the WZW model.

The field variations (3.28)–(3.29) can in this case be written, (after noting that n+ ∈ sl2

is abelian and hence has vanishing structure constants), as

δc1(z) = 0, (3.33)

δb1(z) = J1(z) − χDS(J
1(z)). (3.34)

These variations coincide exactly with the holomorphic BRST-variations in (2.52) of the

B-gauged WZW model on SL(2) after one makes an identification between the arbitrary

constant M1
+ and −χDS(J

1(z)) = −1. Moreover, the BRST-charge Q = Q0 + Q1 which

generates the variations in (3.33)–(3.34) will be given by

Q =

∮
dz

2πi

(
J1(z) − χDS(J1(z))

)
c1(z). (3.35)

Notice that Q also coincides with QBRST of (2.53) - the holomorphic BRST-charge of the

B-gauged WZW model on SL(2).

In summary, we find that the holomorphic BRST-cohomology of the B-gauged WZW

model on SL(2), furnishes a physical realisation of the purely algebraic DS-reduction scheme

of generating the Hecke algebra associated to Wk′(ŝl2). The classical limit of Wk′(ŝl2) -

given by W∞(ŝl2) - is indeed the classical W-algebra generated by the Laurent modes of the

field T classical(z) in the classical, holomorphic BRST-cohomology of the B-gauged WZW

model on SL(2).
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The Wk′(ŝl3) algebra from the DS-reduction scheme. Likewise, note that

from (3.31), for g = sl3, where dim(sl2) = 8, h∨ = 3, ρ∨ = ρ, |ρ∨|2 = 2, (ρ∨, α1) = 1,

(ρ∨, α2) = 1, and (ρ∨, α3) = 2, we find that the central charge of the resulting algebra

Wk′(ŝl3) generated by the Laurent modes of local operators in the Q-cohomology, will be

given by c = 8k′/(k′ +3)−24k′−30 = 50−24(k′ +3)−24/(k′ +3). This is exactly the W-

algebra that the Laurent modes of the Ttotal(z) and T
(3)
total(z) operators in the holomorphic

BRST-cohomology of the B-gauged WZW model on SL(3), generate.

In addition, for g = sl3, we have from (3.30), the stress tensor

TDS(z) = TSL(3)+∂zJ
1(z)+∂zJ

2(z)+(∂zb
1)(c1)(z)+(∂zb

2)(c2)(z)+2(∂zb
3)(c3)(z)+(b3)(∂zc3)(z),

(3.36)

where the conformal dimensions of (b1, c1), (b2, c2) and (b3, c3) are (0, 1), (0, 1) and (−1, 2),

respectively. Thus, we see that TDS(z) is exactly Ttotal(z) of the B-gauged WZW model on

SL(3), and that moreover, the ghost fields (b1, c1), (b2, c2) and (b3, c3) of the DS-reduction

scheme have the same conformal dimensions as the (b1, c1z), (b2, c2z) and (b3,z, c3zz) ghost

fields of the WZW model.

The field variations (3.28)–(3.29) in this case can be written as

δcα(z) = −1

2
fβγ

α (cβcγ)(z), (3.37)

δbα(z) = Jα(z) − χDS(Jα(z)) − fαβ
γ (bγcβ)(z), (3.38)

where α, β, γ = 1, 2, 3. Notice that these variations coincide exactly with the holomorphic

BRST-variations in (2.100) of the B-gauged WZW model on SL(3) after one makes an

identification between the arbitrary constants Mα
+ and −χDS(J

α(z)). Moreover, the BRST-

charge Q = Q0 +Q1 which generates the variations in (3.37)–(3.38) will be given by

Q =

∮
dz

2πi

3∑

α,β,γ=1

(
(Jα(z) − χDS(J

α(z)))cα(z) − 1

2
fαβ

γ (bγcαcβ)(z)

)
. (3.39)

Notice that Q also coincides with QBRST of (2.106) - the holomorphic BRST-charge of the

B-gauged WZW model on SL(3).

In summary, we find that the holomorphic BRST-cohomology of the B-gauged WZW

model on SL(3), furnishes a physical realisation of the purely algebraic DS-reduction scheme

of generating the Hecke algebra associated to Wk′(ŝl3). The classical limit of Wk′(ŝl3) -

given by W∞(ŝl3) - is indeed the classical W-algebra generated by the Laurent modes of

the fields T classical(z) and T
(3)
classical(z) in the classical, holomorphic BRST-cohomology of

the B-gauged WZW model on SL(3).

The B-gauged WZW model on SL(N) and the Wk′(ŝlN) algebra. As one might

have already guessed, the above observations about the physical realisation of the algebraic

DS-reduction scheme via the holomorphic BRST-cohomology of a B-gauged WZW model

on SL(N), is actually valid for all N , not just N = 2, 3. Let us substantiate this statement

now with a discussion of the BRST-quantisation of the B-gauged WZW model on SL(N),

which, for the cases of SL(2) and SL(3), we have already described explicitly in section 2.
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Recall from (2.43) in section 2.2 that the action of the B-gauged WZW model on

SL(N) takes the form

SB−gauged(g,Az , Az̄, J
+, J̄+) = SWZ(g)− k′

2π

∫

Σ
d2zTr[Az̄(J

+(z)+M+)−Az(J̄
+(z̄)+M̄+)

−AzgAz̄g
−1 +AzAz̄]. (3.40)

As explained in section 2.2, with respect to the Cartan decomposition slN = n− ⊕
c ⊕ n+, one can write J(z) =

∑dimn−
a=1 Ja

−(z)t−a +
∑dimc

a=1 J
a
c (z)tca +

∑dimn+

a=1 Ja
+(z)t+a ,

J̄(z̄) =
∑dimn−

a=1 J̄a
−(z̄)t−a +

∑dimc
a=1 J̄

a
c (z̄)tca +

∑dimn+

a=1 J̄a
+(z̄)t+a , Az =

∑dimn+

a=1 Ãa
zt

+
a and

Az̄ =
∑dimn+

a=1 Ãa
z̄t

+
a , where t−a ∈ n−, tca ∈ c, and t+a ∈ n+. One can also write

M =
∑dimn−

a=1 Ma
−t

−
a +

∑dimc
a=1 M

a
c t

c
a +

∑dimn+

a=1 Ma
+t

+
a , where Ma

±;c are arbitrary number

constants, and one can also write M̄ =
∑dimn−

a=1 M̄a
−t

−
a +

∑dimc
a=1 M̄

a
c t

c
a +

∑dimn+

a=1 M̄a
+t

+
a ,

where M̄a
±;c are arbitrary number constants. Then, one can write (3.40) as

SSL(N)(g,Az , Az̄, J
+, J̄+) = SWZ(g)− k′

2π

∫

Σ
d2z

dimn+∑

l=1

[
Ãl

z̄(J
l
+(z)+M l

+)−Ãl
z(J̄

l
+(z̄)+M̄ l

+)
]

−Tr[AzgAz̄g
−1 −AzAz̄] (3.41)

Due to the B-gauge invariance of the theory, we must divide the measure in any path

integral computation by the volume of the B-gauge symmetry. That is, the partition

function has to take the form

ZSL(N) =

∫

Σ

[g−1dg, dÃl
z , dÃ

l
z̄]

(gaugevolume)
exp

(
iSSL(N)(g,Az , Az̄ , J

+, J̄+)
)
. (3.42)

One must now fix this gauge invariance to eliminate the non-unique degrees of freedom.

One can do this by employing the BRST formalism which requires the introduction of

Faddev-Popov ghost fields. In order to obtain the holomorphic BRST transformations

of the fields, one simply replaces the infinitesimal position-dependent parameters ǫl of

h = B = exp(−∑dimn+

l=1 ǫlt+m) in the corresponding left-sector of the gauge transformations

in (2.34) with the ghost fields cl, which then gives us

δBRST(g) = −clt+l g, δBRST(Ãl
z̄) = −Dz̄c

l, δBRST(others) = 0. (3.43)

The components of the ghost field c(z) =
∑dimn+

l=1 cl(z)t+l and those of its anti-ghost partner

b(z) =
∑dimn+

l=1 bl(z)t+l will transform as

δBRST(cl) = −1

2
f l

mkc
mck, δBRST(bl) = B̃l, δBRST(B̃l) = 0, (3.44)

where the f l
mk’s are the structure constants of the nilpotent subalgebra n+. Also, the B̃l’s

are the Nakanishi-Lautrup auxiliary fields that are the BRST transforms of the bl’s. They

also serve as Lagrange multipliers to impose the gauge-fixing conditions.

In order to obtain the antiholomorphic BRST transformations of the fields, one employs

the same recipe to the corresponding right-sector of the gauge transformations in (2.34)
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with the infinitesimal position-dependent gauge parameter now replaced by the ghost field

c̄l, which then gives us

δ̄BRST(g) = c̄lt+l g, δ̄BRST(Ãl
z) = −Dz c̄

l, δ̄BRST(others) = 0. (3.45)

The components of the ghost field c̄(z̄) =
∑dimn+

l=1 c̄l(z̄)t+l and those of its anti-ghost partner

b̄(z̄) =
∑dimn+

l=1 b̄l(z̄)t+l will transform as

δ̄BRST(c̄l) = −1

2
f l

mk c̄
mc̄k, δ̄BRST(b̄l) = ˜̄Bl, δ̄BRST( ˜̄Bl) = 0. (3.46)

In the above, the ˜̄Bl’s are the Nakanishi-Lautrup auxiliary fields that are the antiholomor-

phic BRST transforms of the b̄l fields. They also serve as Lagrange multipliers to impose

the gauge-fixing conditions.

Since the BRST transformations in (3.43) and (3.45) are just infinitesimal versions of

the gauge transformations in (2.34), SSL(N)(g,Az , Az̄, J
+, J̄+) will be invariant under them.

As in the SL(2) and SL(3) cases, in addition to (δBRST + δ̄BRST) · (δBRST + δ̄BRST) = 0,

the holomorphic and antiholomorphic BRST-variations are also separately nilpotent, i.e.,

δ2BRST = 0 and δ̄2BRST = 0. Moreover, δBRST · δ̄BRST = −δ̄BRST · δBRST. This means that

the BRST-cohomology of the B-gauged WZW model on SL(N) can be decomposed into

independent holomorphic and antiholomorphic sectors that are just complex conjugate of

each other, and that it can be computed via a spectral sequence, whereby the first two

complexes will be furnished by its holomorphic and antiholomorphic BRST-cohomologies

respectively. Since we will only be interested in the holomorphic chiral algebra of the B-

gauged WZW model on SL(N) (which as mentioned, is just identical to its antiholomorphic

chiral algebra by a complex conjugation), we shall henceforth focus on the holomorphic

BRST-cohomology of the B-gauged WZW model on SL(N).

By the usual recipe of the BRST formalism, one can fix the gauge by adding to the

BRST-invariant action SSL(N)(g,Az , Az̄ , J
+, J̄+), a BRST-exact term. Since the BRST

transformation by (δBRST + δ̄BRST) is nilpotent, the new total action will still be BRST-

invariant as required. The choice of the BRST-exact operator will then define the gauge-

fixing conditions. A consistent choice of the BRST-exact operator that will give us the

requisite action for the ghost and anti-ghost fields is

SSL(N)(g,Az , Az̄ , J
+, J̄+) + (δBRST + δ̄BRST)


 k′

2π

∫

Σ
d2z

dimn+∑

l=1

Ãl
z̄b

l + Ãl
z b̄

l


 ,

where one will indeed have the desired total action, which can be written as

SWZW(g)− k′

2π

∫

Σ
d2z

{ dimn+∑

l=1

[
Ãl

z̄

(
J l

+(z)+M l
+−B̃l

)
−Ãl

z

(
J̄ l

+(z̄)+M̄ l
++ ˜̄Bl

)]
(3.47)

−Tr[AzgAz̄g
−1−AzAz̄]

}
+
k′

2π

∫

Σ
d2z

dimn+∑

l=1

(
clDz̄b

l++̄clDz b̄
l
)
.
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From the equations of motion by varying the B̃l’s, we have the conditions Ãl
z̄ = 0 for

l = 1, . . . ,dimn+. From the equations of motion by varying the ˜̄Bl’s, we also have the

conditions Ãl
z = 0 for l = 1, . . . ,dimn+. Thus, the partition function of the B-gauged

WZW model can also be expressed as

ZSL(N) =

∫
[g−1dg, db, dc, db̄, dc̄]exp

(
iSWZW(g)+

ik′

2π

∫

Σ
d2zTr(c · ∂z̄b)(z)+Tr(c̄ · ∂z b̄)(z̄)

)
,

(3.48)

where the holomorphic BRST variations of the fields which leave the effective action

in (3.48) invariant are now given by

δBRST(g) = −cmt+mg, δBRST(cl) = −1

2
f l

mkc
mck, δBRST(bl) = J l

+ +M l
+ − f l

mkb
mck,

δBRST(others) = 0. (3.49)

The holomorphic BRST-charge generating the field variations in (3.49) will be given by

QBRST =

∮
dz

2πi




dimn+∑

l=1

cl(z)(J l
+(z) +M l

+) − 1

2

dimn+∑

l=1

f l
mkb

mclck(z)


 . (3.50)

The free-field action of the left-moving ghost fields in (3.48) implies that we have the usual

OPE’s of (dimn+) free bc systems. From these free bc OPE’s, one can verify that QBRST

in (3.50) will indeed generate the field variations in (3.49).

Again, though we did not make this obvious in our discussion above, by integrating

out the Ãl
z̄’s in (3.41), and using the above conditions Ãl

z = 0 for l = 1, . . . ,dimn+, we

find that we actually have the relations (J l
+(z) + M l

+) = 0 for l = 1, . . . ,dimn+. These

relations (involving the current associated to the Borel subalgebra b of the group B that

we are modding out by) will lead us directly to the correct form of the holomorphic stress

tensor for the gauged WZW model without reference to a coset formalism.

Note that as in the SL(2) and SL(3) cases of section 2, physically consistent with

the holomorphic chiral algebra of the purely bosonic sector of the twisted sigma-model

on SL(N)/B, there are currents Ja(z) in the holomorphic BRST-cohomology of the non-

dynamically B-gauged WZW model on SL(N), where a = 1, 2, . . . ,dimslN , that generate

an affine SL(N) OPE algebra at level k′. As such, one can construct a holomorphic stress

tensor using the Sugawara formalism as

TSL(N)(z) =
: dab(J

aJb)(z) :

k′ + h∨
. (3.51)

However, as shown above, one will have the conditions J l
+ = −M l

+ for l = 1, 2, . . . ,dimn+.

In order that the conformal dimensions of the J l
+’s be compatible with these conditions,

one must define a modified holomorphic stress tensor:

Tmodified(z) = TSL(N)(z) +~l · ∂ ~Jc(z), (3.52)

where ~Jc(z) is an (N − 1)-dimensional vector with components being the J l
c currents asso-

ciated to the Cartan subalgebra c, and ~l is a sum of simple, positive roots of slN . In order
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for the above conditions on the J l
+’s be compatible with the fact that QBRST generating

the holomorphic variations δBRST(bl) of (3.49) must be a scalar of dimension zero, the

(dimn+)-set of left-moving ghost systems (bl, cl) must have conformal dimensions (1−h, h)
for l = 1, 2, . . . ,dimn+, where h is the conformal dimension of the corresponding J l

+ current

under Tmodified(z). With all these points in mind, and by including the holomorphic stress

tensor contribution from the action of the left-moving ghost fields, we can write the total

holomorphic stress tensor of the B-gauged WZW model on SL(N) as

Ttotal(z) =
: dab(J

aJb)(z) :

k′ + h∨
+

dimc∑

a=1

∂zJ
a
c (z) +

∑

l∈△+

((ρ∨, l) − 1)bl∂zc
l(z) + (ρ∨, l)(∂zb

lcl)(z),

(3.53)

where △+ is the set of positive roots of slN , and ρ∨ is the “dual Weyl vector” of slN . Notice

that Ttotal(z) is just TDS(z) in (3.30) for ĝ = ŝlN . Moreover, the central charge of Ttotal(z)

will be given by

c = N4 − 1 −N(N2 − 1)

(
1

k′ +N
+ k′ +N

)
− (N4 − 2N3 +N), (3.54)

which can be rewritten as

c =
k′dim(slN )

(k′ + h∨)
− 12k′|ρ∨|2 − 2

∑

l∈△+

(
6(ρ∨, l)2 − 6(ρ∨, l) + 1

)
, (3.55)

since h∨ = N for slN , and (N2 − 1) = dim(slN ). This coincides with the central charge of

TDS(z) in (3.31) for g = slN .

Note also that for any J l
+ with h 6= 0, the corresponding M l

+ constant must be set to

zero for consistency. This means that we can identify M l
+ with −χDS(J

l
+(z)). Hence, we

can write the holomorphic BRST-variations in (3.49) as

δBRST(g) = −cmt+mg, δBRST(cl) = −1

2
f l

mkc
mck, δBRST(bl) = J l

+ − χDS(J
I
+) − f l

mkb
mck,

(3.56)

which just coincides with the BRST-variations of the DS-reduction scheme in (3.28)–(3.29)

for g = slN . Last but not least, the holomorphic BRST-charge which generates these field

transformations can also be written as

QBRST =

∮
dz

2πi




dimn+∑

l=1

cl(z)
(
J l

+(z) − χDS(J
l
+(z))

)
− 1

2

dimn+∑

l=1

f l
mkb

mclck(z)


 . (3.57)

This just coincides with the sum of Q0 and Q1 in (3.25) and (3.26), i.e., it coincides with

Q of the DS-reduction scheme for g = slN .

In summary, we find that the holomorphic BRST-cohomology of the B-gauged WZW

model on SL(N), will indeed furnish a physical realisation of the purely algebraic DS-

reduction scheme of generating the Hecke algebra that is spanned by local operators whose

Laurent modes generate a Wk′(ŝlN ) algebra with central charge (3.31). Consequently, the
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classical limit of Wk′(ŝlN ), i.e., W∞(ŝlN ), will be given by the Poisson W-algebra generated

by the Laurent modes of the classical counterparts of the local operators which lie in the

classical, holomorphic BRST-cohomology of the B-gauged WZW model on SL(N). We

shall discuss this set of classical fields next, and their role in an isomorphism of classical

W-algebras and a level relation that underlie a geometric Langlands correspondence for

any G = SL(N).

3.4 An equivalence of classical holomorphic chiral algebras and a geometric

Langlands correspondence for any SL(N)

Via a straightforward extension of our arguments in section 2 on the SL(2) and SL(3) cases

to all SL(N), we find that the equivalence - at the level of the holomorphic chiral alge-

bra - between the purely bosonic sector of the twisted sigma-model on SL(N)/B and the

B-gauged WZW model on SL(N), will imply an isomorphism between the closed classical

algebra generated by the Laurent modes of the S(si)(z) fields in the classical, holomor-

phic chiral algebra of the ψj̄-independent sector of the twisted sigma-model on SL(N)/B,

and the closed classical algebra generated by the Laurent modes of the corresponding

T
(si)
classical(z) = −h∨ · T (si)

classical(z) fields in the classical, holomorphic BRST-cohomology of

the B-gauged WZW model on SL(N). Here, the T
(si)
classical(z) =

∑
n L

(si)
n z−n−si fields are

just the classical counterparts of the T
(si)
total(z) = (k + h∨) T

(si)
total(z) operators that exist in

the quantum, holomorphic BRST-cohomology of the gauged WZW model at k 6= −h∨,

whereby the Laurent modes of the T
(si)
total(z) operators will generate the Wk′(ŝlN )-algebra

discussed above.

Recall from our earlier discussion that the Laurent modes of the Ssi(z) fields will

generate a classical WN -algebra that contains a Virasoro subalgebra given by

{
S(2)

n , S(2)
m

}
P.B.

= (n−m)S
(2)
n+m − h∨ dim slN

12
(n3 − n) δn,−m. (3.58)

This classical Virasoro subalgebra has central charge c = −h∨dim(slN ). Hence, the Laurent

modes S
(si)
n of the S(si)(z) fields will generate a classical WN -algebra with central charge

c = −h∨dim(slN ), which, we had denoted earlier as WN (−h∨dim(slN )).

On the other hand, the Laurent modes of the T
(si)
classical(z) fields will generate a classical

W∞(ŝlN )-algebra, which, consistent with the equivalence of the holomorphic chiral algebras

of the ψj̄-independent sector of the twisted sigma-model on SL(N)/B and the B-gauged

WZW model on SL(N), is also a classical WN -algebra. Likewise, the central charge of this

classical W∞-algebra will be given by the central charge of its classical Virasoro subalgebra.

Its classical Virasoro subalgebra is given by

{
L

(2)
n , L

(2)
m

}
P.B.

= (n−m)L
(2)
n+m +

c(k, k′)k→−h∨,k′→∞

12
(n3 − n)δn,−m, (3.59)

where

c(k, k′) = (k + h∨)

(
N4 − 1 −N(N2 − 1)

(
1

(k′ + h∨)
+ (k′ + h∨)

)
− (N4 − 2N3 +N)

)
,

(3.60)
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and L
(2)
n = −h∨ · L(2)

n corresponds to S
(2)
n , while L

(2)
n is a Virasoro mode of the classical

counterpart T
(2)
classical(z) of T

(2)
total(z). Therefore, the central charge of the W∞(ŝlN )-algebra

generated by the Laurent modes of the T
(si)
classical(z) fields will be given by c(k, k′) where

k → −h∨ and k′ → ∞.

An isomorphism between the classical W-algebras generated by the S
(si)
n ’s and the

L
(si)
n ’s necessarily implies an isomorphism between the classical subalgebras generated by

the S
(2)
n ’s and L

(2)
n ’s in (3.58) and (3.59) respectively. This in turn means that we must

have the relation

c(k, k′)k→−h∨,k′→∞ = −h∨dim slN . (3.61)

In the examples studied in §2 where N = 2, 3, we saw that the above relation would

hold if and only (k + h∨)(k′ + h∨) = 1. One can quickly verify that this would also

be the case for any N : notice that the surviving term in c(k, k′)k→−h∨,k′→∞ is just

−N(N2 − 1)(k + h∨)(k′ + h∨), and since N = h∨ and (N2 − 1) = dim(slN ), we will

have c(k, k′)k→−h∨,k′→∞ = −h∨dim(slN ) if and only if (k + h∨)(k′ + h∨) = 1, whence

the classical WN (−h∨dim(slN ))-algebra will be isomorphic to the W∞(ŝlN )-algebra with

central charge c(k, k′)k→−h∨,k′→∞ = −h∨dim(slN ). Since WN (−h∨dim(slN )) ≃ z(ŝlN ),

and since for g = slN = Lg, h∨ = Lh∨, and r∨ = 1, we thus see that an equivalence -

at the level of the holomorphic chiral algebra - between the ψj̄-independent sector of the

twisted sigma-model on SL(N)/B and the B-gauged WZW model on SL(N), would imply

an isomorphism of Poisson algebras

z(ĝ) ≃ W∞(Lĝ), (3.62)

and the level relation

(k + h∨)r∨ =
1

(k′ + Lh∨)
. (3.63)

Note at this point that the purely bosonic, ψj̄-independent sector of the twisted sigma-

model on SL(N)/B, can be described, via (2.31), by a bosonic string on SL(N)/B. On

the other hand, note that since a bosonic string on a group manifold G can be described

as a WZW model on G, it will mean that the B-gauged WZW model on SL(N) can be

interpreted as a B-gauged bosonic string on SL(N). Thus, we see that an equivalence, at

the level of the holomorphic chiral algebra, between a bosonic string on SL(N)/B and a B-

gauged version of itself on SL(N) - a statement which stems from the ubiquitous notion that

one can always physically interpret a geometrical symmetry of the target space as a gauge

symmetry in the worldsheet theory - will imply an isomorphism of classical W-algebras and

a level relation that underlie a geometric Langlands correspondence for G = SL(N)! Note

that the correspondence between the k → −h∨ and k′ → ∞ limits (within the context of the

above Poisson algebras) is indeed consistent with the relation (3.63). These limits define a

“classical” geometric Langlands correspondence. A “quantum” generalisation of the SL(N)

correspondence can be defined for other values of k and k′ that satisfy the relation (3.63),

but with the isomorphism of (3.62) replaced by an isomorphism of quantum W-algebras

(derived from a DS-reduction scheme) associated to ŝlN at levels k and k′ respectively [6].
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4. About the Hecke eigensheaves and Hecke operators

We shall now demonstrate, via the isomorphism of classical W-algebras discussed in sec-

tion 3, how one can derive a correspondence between flat holomorphic LG-bundles on the

worldsheet Σ and Hecke eigensheaves on the moduli space BunG of holomorphic G-bundles

on Σ, where G = SL(N). In the process, we will be able to physically interpret the Hecke

eigensheaves and Hecke operators of the geometric Langlands program for G = SL(N),

in terms of the correlation functions of purely bosonic local operators in the holomorphic

chiral algebra of the twisted (0, 2) sigma-model on the complex flag manifold SL(N)/B.

4.1 Hecke eigensheaves on BunSL(N) and flat L SL(N)-bundles on Σ

Local primary field operators. As we will explain shortly, the correlation functions

of local primary field operators can be associated to the sought-after Hecke eigensheaves.

As such, let us begin by describing these operators in the twisted (0, 2) sigma-model on

a complex flag manifold X = SL(N)/B. By definition, the holomorphic primary field

operators Φλ
s (z) of any theory with an affine SL(N) OPE algebra obey [29]

Ja(z)Φλ
r (z′) ∼ −

∑

s

(taλ)rs Φλ
s (z′)

z − z′
, (4.1)

where taλ is a matrix in the λ representation of slN , r, s = 1, . . . ,dim|λ|, and

a = 1, . . . ,dim(slN ).

Since the Φλ
s (z)’s obey OPE relations with the quantum operators Ja(z), it will mean

that they, like the Ja(z)’s, must exist as quantum bosonic operators of the sigma-model

on X. And moreover, since (4.1) and the affine SL(N) OPE algebra at the critical level

generated by the Ja(z)’s in the Q+-cohomology of the quantum sigma-model together form

a closed OPE algebra, it will mean that the Φλ
s (z)’s are also local operators in the Q+-

cohomology of the sigma-model on X at the quantum level. From ourQ+-Cech cohomology

dictionary, this means that the Φλ
s (z)’s will correspond to classes in H0(X,Och

X ), i.e., the

global sections of the sheaf Och
X of CDO’s on X. Note that this observation is also consistent

with (4.1) - one can generate other global sections of the sheaf Och
X from the OPE’s of

existing global sections. (Recall that we did this to generate the J3(z) current from the

OPE of the J−(z) and J+(z) currents of the affine SL(2) OPE algebra when we studied

the sigma-model on SL(2)/B in section 2).

The fact that these operators can be described by global sections of the sheaf of CDO’s

on X means that they reside within the purely bosonic sector of the holomorphic chiral

algebra of the underlying sigma-model on X. As we shall see, this observation will serve

as a platform for a physical interpretation of the Hecke eigensheaves.

Space of coinvariants. Associated to the correlation functions of the above-described

local primary field operators, is the concept of a space of coinvariants, which, in its inter-

pretation as a sheaf over the moduli space of holomorphic G-bundles on Σ that we will

clarify below, is directly related to the Hecke eigensheaves that we are looking for. Hence,

let us now turn our attention to describing this space of coinvariants.
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Notice that if the twisted sigma-model were to be conformal, i.e., {Q+, Tzz} = 0 even

after quantum corrections, we would have a CFT operator-state isomorphism, such that

any primary field operator Φλ
s (z) would correspond to a state |Φλ

s 〉 in the highest-weight

representation of ĝ = ŝlN . However, since the twisted sigma-model on a complex flag

manifold SL(N)/B lacks a holomorphic stress tensor and is thus non-conformal, a Φλ
s (z)

operator will not have a one-to-one correspondence with a state |Φλ
s 〉. Rather, the states

just furnish a module of the chiral algebra spanned by the operators themselves.

Nevertheless, in the axiomatic CFT framework of a theory with an affine algebra ĝ,

the operator-state isomorphism is an axiom that is defined at the outset, and therefore,

any primary field operator will be axiomatically associated to a state in the highest-

weight representation of ĝ. Bearing this in mind, now consider a general correlation

function of n primary field operators such as
〈
Φλ1

s (z1) . . .Φ
λn
s (zn)

〉
. Note that it can

be viewed, in the axiomatic CFT sense, as a map from a tensor product of n highest-

weight representations of ŝlN to a complex number. Next, consider a variation of the

correlation function under a global SL(N)-transformation, i.e., δω
〈
Φλ1

s (z1) . . .Φ
λn
s (zn)

〉
=∮

C dz
∑

a ω
a
〈
Ja(z)Φλ1

s (z1) . . .Φ
λn
s (zn)

〉
, where ωa is a position-independent scalar trans-

formation parameter, and where C is a contour that encircles all the points z1, . . . , zn on

Σ. Since all the Ja(z)’s are dimension-one conserved currents in the Q+-cohomology of

the twisted sigma-model on SL(N)/B, they will generate a symmetry of the theory. In

other words, we will have δω
〈
Φλ1

s (z1) . . .Φ
λn
s (zn)

〉
= 0, which is simply a statement of the

global SL(N)-invariance of any theory with an affine SL(N) algebra. This last statement,

together with the one preceding it, means that a general correlation function of n pri-

mary field operators
〈
Φλ1

s (z1) . . .Φ
λn
s (zn)

〉
will define a “conformal block” in the axiomatic

CFT sense [6]. Proceeding from this mathematical definition of a “conformal block”, the

collection of operators Φλ1
s (z1) . . .Φ

λn
s (zn) will define a vector Φ in the dual space of coin-

variants HslN (Φλ1
s (z1) . . .Φ

λn
s (zn)), whereby the “conformal block” or correlation function〈

Φλ1
s (z1) . . .Φ

λn
s (zn)

〉
can be computed as the square |Φ|2 of length of Φ with respect to

a hermitian inner product on HslN (Φλ1
s (z1) . . .Φ

λn
s (zn)) [6]. All correlation functions of

primary field operators can be computed once this inner product is determined.

Sheaf of coinvariants on BunSL(N). As mentioned above, what will be directly related

to the Hecke eigensheaves is the sheaf of coinvariants on the moduli space BunG of holo-

morphic G-bundles on the worldsheet Σ. Let us now describe how this sheaf of coinvariants

arises. However, before we proceed, let us first explain how holomorphic G-bundles on Σ

can be consistently defined in the presence of an affine G-algebra in the sigma-model on

X = SL(N)/B, where G = SL(N) in our case.

Recall that for the sigma-model on X = SL(N)/B, we have the OPE

Ja(z)Jb(w) ∼ − Ndab

(z − w)2
+
∑

c

fab
c Jc(w)

(z − w)
, (4.2)

where dab is the Cartan-Killing metric of slN . Note also that since the above dimension-

one current operators are holomorphic in Σ, they can be expanded in a Laurent expansion
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around the point w on Σ as

Ja(z) =
∑

n

Jn
a (w)(z − w)−n−1. (4.3)

Consequently, from the above OPE, we will have the commuator relation

[Jn
a (w), Jm

b (w)] =
∑

c

fab
cJn+m

c (w) − (Ndab) n δn+m,0, (4.4)

such that the Lie algebra g = slN generated by the zero-modes of the currents will be

given by [
J0

a(w), J0
b (w)

]
=
∑

c

fab
cJ0

c (w). (4.5)

One can then exponentiate the above generators that span slN to define an element of

G = SL(N), and since these generators depend on the point w in Σ, it will mean that

one can, via this exponential map, consistently define a non-trivial principal G-bundle

on Σ. Moreover, this bundle will be holomorphic as the underlying generators only vary

holomorphically in w on the worldsheet Σ.

Let us label the above-described holomorphic SL(N)-bundle on Σ as P. Then, the

space HslN (Φλ1
s (z1) . . .Φ

λn
s (zn)) of coinvariants will vary non-trivially under infinitesimal

deformations of P. As such, one can define a sheaf on coinvariants over the space of all

holomorphic SL(N)-bundles on Σ, i.e., BunSL(N). Let us justify this statement next.

Firstly, note that with our description of P via the affine SL(N)-algebra of the sigma-

model on X, there is a mathematical theorem [7] which states that BunSL(N) is locally

uniformized by the affine SL(N)-algebra. What this means is that the tangent space

TPBunSL(N) to the point in BunSL(N) which corresponds to an SL(N)-bundle on Σ labelled

by P, will be isomorphic to the space H1(Σ,EndP) [7]. Moreover, deformations of P, which

correspond to displacements from this point in BunSL(N), are generated by an element

η(z) = Jaηa(z) of the loop algebra of slN , where ηa(z) is a position-dependent scalar defor-

mation parameter (see section 17.1 of [7] and section 7.3 of [6]). With this in mind, let us

again consider the n-point correlation function
〈
Φλ1

s (z1) . . .Φ
λn
s (zn)

〉
. By inserting η(z) into

this correlation function, and computing the contour integral around the points z1, . . . , zn,

we have δη
〈
Φλ1

s (z1) . . .Φ
λn
s (zn))

〉
=
〈∮

C dz
∑

a ηa(z)J
a(z)Φλ1

s (z1) . . .Φ
λn
s (zn)

〉
, where C is

a contour which encircles the points z1, . . . , zn on Σ, and δη
〈
Φλ1

s (z1) . . .Φ
λn
s (zn)

〉
will be

the variation of
〈
Φλ1

s (z1) . . .Φ
λn
s (zn)

〉
under an infinitesimal deformation of P generated by

η(z) (see eq. (7.9) of [6] and also [30]). Note that this variation does not vanish, since ηa(z),

unlike ω earlier, is a position-dependent parameter of a local SL(N)-transformation. There-

fore, as explained above, since the correlation function
〈
Φλ1

s (z1) . . .Φ
λn
s (zn)

〉
is associated

to Φ in the dual space of coinvariants HslN (Φλ1
s (z1) . . .Φ

λn
s (zn)), one can see that Φ must

vary in HslN (Φλ1
s (z1) . . .Φ

λn
s (zn)) as one moves infinitesimally along a path in BunSL(N).

Since Φ is just a vector in some basis of HslN (Φλ1
s (z1) . . .Φ

λn
s (zn)), one could instead in-

terpret Φ to be fixed, while HslN (Φλ1
s (z1) . . .Φ

λn
s (zn)) varies as one moves infinitesimally

along a path in BunSL(N), as P is subjected to infinitesimal deformations. Consequently,

we have an interpretation of a sheaf of coinvariants on BunSL(N), where the fibre of this

– 57 –



J
H
E
P
0
3
(
2
0
0
8
)
0
3
3

sheaf over each point in BunSL(N) is just the space HslN (Φλ1
s (z1) . . .Φ

λn
s (zn)) of coinvariants

corresponding to a particular bundle P that one can consistently define over Σ using the

affine SL(N)-algebra of the sigma-model on X = SL(N)/B. Note howeover, that since

we are dealing with an affine SL(N) algebra at the critical level k = −h∨, the dimension

of the space of coinvariants will be different over different points in BunSL(N). In other

words, the sheaf of coinvariants on BunSL(N) does not have a structure of a vector bundle,

since the fibre space of a vector bundle must have a fixed dimension over different points

on the base. Put abstractly, this is because ŝlN -modules at the critical level may only be

exponentiated to a subgroup of the Kac-Moody group ŜL(N). Nevertheless, the sheaf of

coinvariants is a twisted D-module on BunSL(N) [6].

From the above discussion, one can also make the following phys-

ical observation. Notice that the variation δη
〈
Φλ1

s (z1) . . .Φ
λn
s (zn))

〉
=〈∮

C dz
∑

a ηa(z)J
a(z)Φλ1

s (z1) . . .Φ
λn
s (zn)

〉
in the correlation function as one moves

along BunSL(N), can be interpreted, at the lowest order in sigma-model perturation theory,

as a variation in the correlation function due to a marginal deformation of the sigma-model

action by the term
∮
dz η(z). Since a deformation of the action by the dimensionless term∮

dz η(z) is tantamount to a displacement in the moduli space of the sigma-model itself,

it will mean that δη
〈
Φλ1

s (z1) . . .Φ
λn
s (zn))

〉
is also the change in the correlation function as

one varies the moduli of the sigma-model. This implies that BunSL(N) will at least span

a subspace of the entire moduli space of the sigma-model on X = SL(N)/B. This should

come as no surprise since P is actually associated to the affine SL(N)-algebra of the sigma-

model on X = SL(N)/B as explained above, and moreover, the affine SL(N)- algebra

does depend on the moduli of the sigma-model as mentioned in section 2 and section 3.

Last but not least, note that the sheaf of coinvariants can also be obtained purely

mathematically [6] via a localisation functor ∆, which maps the set Vχ — consisting of

all polynomials F (J (z)) (which exist in the chiral algebra of the twisted sigma-model

on SL(N)/B) that are defined over the field of complex numbers and the c-number

operators S(si)(z), and that are of arbitrary positive degree in the quantum operator

J (z) = 1
(−n1−1)!...(−nm−1)! : ∂−n1−1

z Ja1(z) . . . ∂−nm−1
z Jam(z) : — to the corresponding sheaf

∆(Vχ) of coinvaraints on BunSL(N), where χ denotes a parameterisation of Vχ that depends

on the choice of the set of S(si)(z) fields for i = 1, . . . , rank(slN ). In other words, the sheaf

of coinvariants will be parameterised by χ.12 This observation is pivotal in the mathe-

matical description of the correspondence between Hecke eignesheaves on BunSL(N) and

flat holomorphic L SL(N)-bundles on Σ via the algebraic CFT approach to the geometric

Langlands program [6]. As we will explain below, this parameterisation of the sheaf of

coinvariants on BunSL(N) by the set of Ssi(z) fields can be shown to arise physically in the

sigma-model as well.

A z(ŝlN)-dependent realisation of the affine SL(N) algebra at the critical level.

Before one can understand how, within the context of the sigma-model on X = SL(N)/B,

12Note that in order to be consistent with the notation used in the mathematical literature, we have chosen

to use the symbol χ to label the parameterisation of Vχ. Hopefully, χ that appears here and henceforth

will not be confused with the one-dimensional representation χ of bg′ in section 3.
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the sheaf of coinvariants can be parameterised by a choice of the set of Ssi(z) fields for

i = 1, . . . , rank(slN ), it will be necessary for us to understand how one can achieve a z(ŝlN )-

dependent realisation of the affine SL(N) OPE algebra at k = −h∨ spanned by the set of

Ja(z) currents that correspond to classes in H0(X,Och
X ), where X = SL(N)/B.

To this end, let us start with the case of the affine SL(2) OPE algebra at level k = −2,

spanned by the currents {J+, J−, J3} in the holomorphic chiral algebra of the twisted

sigma-model on X = SL(2)/B, that correspond to classes in H0(X,Och
X ). Recall that the

set {J+, J−, J3} can be expressed in terms of the fields of the free βγ system associated

to the sheaf Och
X of CDO’s on X = SL(2)/B in (2.7), (2.8) and (2.10) respectively. As

explained, these are classes in H0(X,Och
X ), i.e., if the set {J+, J−, J3} were to be defined

on the North pole of X = SL(2)/B ≃ P1, while the set {J̃+, J̃−, J̃3} were to defined

their corresponding counterparts on the South pole of X = SL(2)/B ∼= P1, one will have

J̃+ − J+ = 0, J̃− − J− = 0 and J̃3 − J3 = 0.

Let us now modify the expressions of {J+, J−, J3} as follows:

J ′
+(z) = − : γ2(z)β(z) : +2∂zγ(z) +

1

2
γ(z)c(z), (4.6)

J ′
−(z) = β(z), (4.7)

J ′
3(z) = − : γ(z)β(z) : +

1

2
c(z), (4.8)

where c(z) is a classical c-number field that is holomorphic in z and of conformal dimension

one, i.e., it has a Laurent expansion given by c(z) =
∑

n∈Z
cnz

−n−1. Since c(z) is a classical

field, it will not participate as an interacting quantum field in any of the OPE’s amongst

the quantum operators {J ′
+, J

′
−, J

′
3}. Rather, it will just act as a simple multiplication on

the γ(z) and β(z) fields, or functions thereof. Moreover, this means that c(z), like S(z),

must also be trivial in the Q+-cohomology of the twisted sigma-model on SL(2)/B at the

quantum level, i.e., it can be expressed as aQ+-exact term {Q+, . . . } in the quantum theory.

Now, recall that we had the (non quantum-corrected) geometrical gluing relation γ = 1/γ̃,

where γ and γ̃ are defined on the North and South poles of X = SL(2)/B ≃ P1 respectively.

This expression means that γ defines a global section of the sheaf Ôch
X . From our Q+-Cech

cohomology dictionary, this will mean that γ(z) must correspond to an operator in the

twisted sigma-model on X that is annihilated by the quantum action of Q+. This, together

with the fact that c(z) can be expressed as {Q+, . . . }, will mean that the term 1
2γ(z)c(z)

in J ′
+(z) of (4.6) above, can be written as a Q+-exact term {Q+, . . . }. Likewise, the term

1
2c(z) in J ′

3(z) of (4.8) can also be written as a Q+-exact term {Q+, . . . }. Consequently,

since Q
2
+ = 0 even at the quantum level, {J ′

+, J
′
−, J

′
3} continues to be a set of quantum

operators that are Q+-closed and non-Q+-exact, which therefore correspond to classes in

H0(X, Ôch
X ). Since the OPE’s of Q+-exact terms such as 1

2γ(z)c(z) and 1
2c(z) with the

other Q+-closed terms {−γ2β + 2∂zγ, β,−γβ} that correspond respectively to the set of

original operators {J+, J−, J3} must again result in Q+-exact terms that are trivial in Q+-

cohomology, they can be discarded in the OPE’s involving the set of operators {J ′
+, J

′
−, J

′
3},

i.e., despite being expressed differently from the set of original operators {J+, J−, J3}, the

set of operators {J ′
+, J

′
−, J

′
3} will persist to generate an affine SL(2) OPE algebra at the
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critical level k = −2. In other words, via the set of modified operators {J ′
+, J

′
−, J

′
3} and

their corresponding Laurent modes, we have a different realisation of the affine SL(2)

algebra at the critical level k = −2.

Obviously, from (4.6)–(4.8), we see that the above realisation depends on the choice of

c(z). What determines c(z) then? To answer this, let us first recall that the Segal-Sugawara

tensor S′(z) in the context of the modified operators {J ′
+, J

′
−, J

′
3}, can be expressed as

S′(z) =: (J ′
+J

′
− + J

′2
3 )(z) : in the quantum theory. However, recall also that the original

Segal-Sugawara tensor given by S(z) =: (J+J− + J2
3 )(z) : acts by zero in the quantum

theory. This means that the non-vanishing contributions to S′(z) come only from terms

that involve the c(z) field. A simple computation will show that S′(z) = 1
4c(z)

2 − 1
2∂zc(z).

As required, S′(z) is a classical holomorphic field of dimension-two. Clearly, a unique choice

of S′(z) will determine a unique c(z). In summary, we can generate different realisations

of the affine SL(2) OPE algebra at level k = −h∨ via the set of operators {J ′
+, J

′
−, J

′
3},

that are parameterised by the choice of the corresponding Segal-Sugawara tensor S′(z) in

the classical holomorphic chiral algebra of the purely bosonic sector of the twisted (0, 2)

sigma-model on X = SL(2)/B. Since the Laurent modes of S′(z) span the centre z(ŝl2) of

the completed universal enveloping algebra of ŝl2 at the critical level k = −2, we effectively

have a z(ŝl2)-dependent realisation of the affine SL(2) (OPE) algebra at the critical level.

The above arguments can actually be extended to any SL(N), not just SL(2), i.e.,

for a twisted sigma-model on X = SL(N)/B, one can always find different realisations of

an affine SL(N) OPE algebra at the critical level k = −h∨ that are spanned by the local

operators in the holomorphic chiral algebra of the sigma-model which correspond to classes

in H0(X, Ôch
X ), that are z(ŝlN )-dependent. We shall now import some important results

in [31] to demonstrate this. Firstly, consider the set of local operators composed out of the

N(N − 1)/2 (i.e. dimCX) free βi(z) and γi(z) fields of the N(N − 1)/2 linear βγ systems

associated to the sheaf of CDO’s on X:

J i
−(z) = βαi(z) +

∑

ϕ∈∆+

: P i
ϕ(γα(z))βϕ(z) :, (4.9)

Jk
c (z) = −

∑

ϕ∈∆+

ϕ(hk) : γϕ(z)βϕ(z) :, (4.10)

J i
+(z) =

∑

ϕ∈∆+

: Qi
ϕ(γα(z))βϕ(z) : +ci∂zγ

αi(z), (4.11)

where the subscripts {±, c} denote a Cartan decomposition of the Lie algebra slN under

which the J(z) local operators can be classified (as in section 2), the superscript αi denotes

the free field that can be identified with the ith positive root of slN where i = 1, . . . , N(N−
1)/2, hk is an element of the Cartan subalgebra of slN where k = 1, . . . , N −1, ϕ(hk) is the

kth component of the root ϕ, the symbol ∆+ denotes the set of positive roots of slN , the

ci’s are complex constants, and lastly, P i
ϕ, Q

i
ϕ are some polynomials in the γα free fields.

Theorem 4.3 of [31] tells us that the Laurent modes of the above set of local operators

{J i
±, J

k
c } generate an affine SL(N) algebra at the critical level k = −h∨, i.e., the set {J i

±, J
k
c }

will span an affine SL(N) OPE algebra at the critical level k = −h∨. In fact, for the case

of SL(2), we have the identification J i
± ↔ J± and Jk

c ↔ J3, where {J+, J−, J3} is the set
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of local currents in the holomorphic chiral algebra of the twisted sigma-model on SL(2)/B

in (2.7), (2.8) and (2.10) which generates an affine SL(2) OPE algebra at the critical level

k = −2. The fact that the currents {J i
±, J

k
c } are composed purely out of free βi and γi fields,

and the fact that there will always be classes in H0(X,Och
X ) which correspond to operators

that generate an affine SL(N) OPE algebra [11], will together mean that the set of currents

{J i
±, J

k
c } must correspond (up to Q+-exact terms at worst) to classes in H0(X,Och

X ), i.e.,

the global sections of the sheaf Och
X of CDO’s on X = SL(N)/B. Equivalently, this means

that the set of local current operators {J i
±, J

k
c } will be Q+-closed and hence lie in the

holomorphic chiral algebra of the twisted sigma-model on X = SL(N)/B.

Proceeding as we did for the SL(2) case discussed above, let us now consider a modi-

fication {J i′
±, J

k′

c } of the set of currents {J i
±, J

k
c }, where

J i′
−(z) = βαi(z) +

∑

ϕ∈∆+

: P i
ϕ(γα(z))βϕ(z) :, (4.12)

Jk′

c (z) = −
∑

ϕ∈∆+

ϕ(hk) : γϕ(z)βϕ(z) : +bi(z), (4.13)

J i′

+(z) =
∑

ϕ∈∆+

: Qi
ϕ(γα(z))βϕ(z) : +ci∂zγ

αi(z) + bi(z)γαi(z), (4.14)

and the bi(z)’s are just classical c-number functions that are holomorphic in z and of

conformal dimension one - it can be Laurent expanded as bi(z) =
∑

n∈Z
binz

−n−1.13 Since

the bi(z)’s are classical fields, they will not participate as interacting quantum fields in any

of the OPE’s amongst the quantum operators {J i′
+, J

i′
−, J

k′

3 }. Rather, they will just act as a

simple multiplication on the γαi(z) and βαi(z) fields, or functions thereof. Moreover, this

means that the bi(z)’s, must be trivial in the Q+-cohomology of the twisted sigma-model

on SL(N)/B at the quantum level, i.e., it can be expressed as a Q+-exact term {Q+, . . . }
in the quantum theory. Now, recall that we had the (non quantum-corrected) geometrical

gluing relation γαi = gαi(γα), where each γαi and gαi(γα) is defined in the open set U1

and U2 respectively of the intersection U1 ∩U2 in X. This expression means that the γαi ’s

define global sections of the sheaf Ôch
X . From our Q+-Cech cohomology dictionary, this

will mean that each γαi(z) must correspond to an operator in the twisted sigma-model

on X that is annihilated by Q+ at the quantum level. This, together with the fact that

bi(z)’s can be expressed as {Q+, . . . }, will mean that the bi(z)γαi(z) term in J i′
+(z) of (4.14)

above, can be written as a Q+-exact term {Q+, . . . }. Likewise, the bi(z) term in Jk′

c (z)

of (4.13) can also be written as a Q+-exact term {Q+, . . . }. Consequently, since Q
2
+ = 0

even at the quantum level, {J i′
+, J

i′
−, J

i′
3 } continues to be a set of quantum operators that

are Q+-closed and non-Q+-exact, which therefore correspond to classes in H0(X, Ôch
X ).

Since the OPE’s of Q+-exact terms such as bi(z)γαi(z) and bi(z) with the other Q+-

13Note that the explicit expression of b(z) cannot be arbitrary. It has to be chosen appropriately to ensure

that the Segal-Sugawara tensor and its higher spin analogs given by the S(si)(z)’s, can be identified with

the space of LslN -opers on the formal disc D in Σ as necessitated by the isomorphism z(bslN ) ≃ W∞(L bslN)

from the duality of classical W-algebras for G = SL(N). For example, the expression of b(z) as 1
2
c(z) in

the G = SL(2) case ensures that S′(z) = 1
4
c2(z) − 1

2
∂zc(z) can be identified with a projective connection

on D for each choice of c(z).

– 61 –



J
H
E
P
0
3
(
2
0
0
8
)
0
3
3

closed terms such as (
∑

ϕ∈∆+
: Qi

ϕ(γα)βϕ : +ci∂zγ
αi), (βαi +

∑
ϕ∈∆+

: P i
ϕ(γα)βϕ :), and

(−∑ϕ∈∆+
ϕ(hk) : γϕβϕ :) that correspond respectively to the set of original operators J i

+,

J i
−, and Jk

c , must again result in Q+-exact terms that are trivial in Q+-cohomology, they

can be discarded in the OPE’s involving the set of operators {J i′
+, J

i′
−, J

i′
3 }, i.e., despite being

expressed differently from the set of original operators {J i
+, J

i
−, J

k
c }, the set of operators

{J i′
+, J

i′
−, J

i′
c } will persist to generate an affine SL(N) OPE algebra at the critical level k =

−h∨. In other words, via the set of modified operators {J i′
±, J

k′

c } and their corresponding

Laurent modes, we have a different realisation of the affine SL(N) algebra at the critical

level k = −h∨. This is consistent with Theorem 4.7 of [31], which states that the set

{J i′
±, J

k′

c } of modified operators will persist to generate an affine SL(N) OPE algebra at

the critical level k = −h∨.

Obviously, from (4.12)–(4.14), we see that the above realisation depends on the choice

of the bi(z)’s. What determines the bi(z)’s then? To answer this, let us first recall

that the Segal-Sugawara tensor S(2)′(z) and its higher spin analogs S(si)
′

(z) in the con-

text of the modified operators {J i′
+, J

i′
−, J

k′

c } ∈ {Ja′}, can be expressed as S(si)′(z) =

d̃a1a2...asi
: Ja′

1Ja′

2 . . . Ja′

si (z) : in the quantum theory. However, recall also that the origi-

nal Segal-Sugawara tensor and its higher spin analogs, expressed as S(si)(z) = d̃a1a2...asi
:

Ja1Ja2 . . . Jasi (z) : in terms of the original operators {J i
+, J

i
−, J

k
c } ∈ {Ja}, act by zero

in the quantum theory. This means that the non-vanishing contributions to any of the

S(si)(z)’s come only from terms that involve the additional bi(z) fields. In fact, it is true

that the S(si)′(z)’s also act by zero in the quantum theory at k = −h∨, since they are also

defined via a Sugawara-type construction which results in their quantum definition being

S(si)
′

(z) = (k + h∨)T (si)
′

(z). In other words, the S(si)
′

(z)’s must be classical c-number

fields of spin si that are holomorphic in z. This implies that the S(si)
′

(z)’s will be ex-

pressed solely in terms of the c-number bi(z) fields. An explicit example of this general

statement has already been discussed earlier in the case of SL(2) - for the SL(2) case, we

have the identification J i′
+ ↔ J ′

+, J i′
− ↔ J ′

− Jk′

c ↔ J ′
3, S

(2)′(z) ↔ S′(z), bi(z) ↔ 1
2c(z) and

S(2)′(z) = 1
4c

2(z) − 1
2∂zc(z), whereby the choice of S(2)′(z) determines c(z). Consequently,

a choice of the set of S(si)
′

(z) fields will determine the bi(z) fields. Lastly, note that the

S(si)′(z) fields lie in the classical holomorphic chiral algebra of the purely bosonic sector of

the twisted sigma-model on X = SL(N)/B, and their Laurent modes span the centre z(ŝlN )

of the completed universal enveloping algebra of ŝlN at the critical level k = −h∨. Hence,

we effectively have a z(ŝlN )-dependent realisation of the affine SL(N) (OPE) algebra at the

critical level as claimed.

A z(ŝlN)-dependent parameterisation of the sheaf of coinvariants on BunSL(N).

Now that we have seen how one can obtain a z(ŝlN )-dependent realisation of the affine

SL(N) (OPE) algebra at the critical level, we can proceed to explain how, within the

context of the sigma-model on X = SL(N)/B, the sheaf of coinvariants on BunSL(N) can

be parameterised by a choice of the fields Ssi(z) for i = 1, . . . , rank(slN ).

To this end, notice that since the primary field operators Φλ
s (z) are defined via the

OPE’s with the Ja(z) currents of the ŝlN algebra at the critical level in (4.1), a different

realisation of the Ja(z) currents will also result in a different realisation of the Φλ
s (z)’s.
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Consequently, we will have a z(ŝlN )-dependent realisation of the primary field operators

Φλ
s (z). This amounts to a z(ŝlN )-dependent realisation of their n-point correlation functions〈
Φλ1

s (z1) . . .Φ
λn
s (zn)

〉
. Since the correlation functions can be associated to a (vector in the)

space of coinvariants as explained earlier, one will consequently have a z(ŝlN )-dependent

realisation of the sheaf of coinvariants on BunSL(N) as well, i.e., the sheaf of coinvariants

will be parameterised by a choice of the fields Ssi(z) for i = 1, . . . , rank(slN ).

A correspondence between Hecke eigensheaves on BunSL(N) and flat L SL(N)-

bundles on Σ. Finally, we shall now demonstrate that the above observation about

a z(ŝlN )-dependent realisation of the sheaf of coinvariants on BunSL(N), and the duality

of classical W-algebras for G = SL(N) as an isomorphism of Poisson algebras z(ŝlN ) ≃
W∞(LŝlN ), will result in a correspondence between Hecke eigensheaves on BunSL(N) and

flat holomorphic L SL(N)-bundles on the worldsheet Σ.

Firstly, note that the classsical W-algebra W∞(LŝlN ) is isomorphic to Fun OpLslN
(D×),

the algebra of functions on the space of LslN -opers on the punctured disc D× in Σ, where

an slN -oper on Σ is an nth order differential operator acting from Ω−(n−1)/2 to Ω(n+1)/2

(where Ω is the canonical line bundle on Σ) whose principal symbol is equal to 1 and

subprincipal symbol is equal to 0 [6]. Roughly speaking, it may be viewed as a (flat)

connection on an L SL(N)-bundle on Σ. In turn, Fun OpLslN
(D×) is related to the algebra

Fun OpLslN
(D) of functions on the space of LslN -opers on the formal disc D in Σ, via

Fun OpLslN
(D×) ≃ Ũ(Fun OpLslN

(D)), where Ũ is a functor from the category of vertex

algebras to the category of Poisson algebras [31]. Since from the duality of classical W-

algebras for G = SL(N), we have an isomorphism of Poisson algebras z(ŝlN ) ≃ W∞(LŝlN ),

it will mean that the S(si)(z)’s will correspond to the components of the (numeric) LslN -

oper on the formal disc D in Σ [6]. Hence, a choice of the set of S(si)(z) fields will amount

to picking up an LslN -oper on D. Since any Lg-oper on D can be extended to a regular
Lg-oper that is defined globally on Σ, it will mean that a choice of the set of S(si)(z) fields

will determine a unique L SL(N)-bundle on Σ (that admits a structure of an oper χ) with

a holomorphic connection.

Secondly, recall that we have a z(ŝlN )-dependent realisation of the sheaf of coinvariants

on BunSL(N) which depends on the choice of the fields Ssi(z) for i = 1, . . . , rank(slN ).

Hence, from the discussion in the previous paragraph, we see that we have a correspondence

between a flat holomorphic L SL(N)-bundle on Σ and a sheaf of coinvariants on BunSL(N).

Lastly, recall that ∆(Vχ) and therefore the sheaf of of coinvariants on BunSL(N) has a

structure of a twisted D-module on BunSL(N). The sought-after Hecke eigensheaf [6] is an

untwisted holonomic D-module ∆(Vχ)⊗K−1/2 on BunSL(N) with eigenvalue Eχ, whereK is

the canonical line bundle on BunSL(N), and Eχ is the unique L SL(N)-bundle corresponding

to a particular choice of the set of S(si)(z) fields. In total, since tensoring with a globally-

defined K on BunSL(N) just maps, in a one-to-one fashion, ∆(Vχ) to ∆(Vχ) ⊗ K−1/2, we

find that we have a one-to-one correspondence between a Hecke eigensheaf on BunSL(N)

and a flat holomorphic L SL(N)-bundle on Σ, where L SL(N) = PSL(N), i.e., we have a

geometric Langlands correspondence for G = SL(N).14

14Note that the above-mentioned flat holomorphic LSL(N)-bundles on Σ are restricted to those that have
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Physical interpretation of the Hecke eigensheaves on BunSL(N). From all of our

above results, we see that one can physically interpret the Hecke eigensheaf as follows. A

local section of the fibre of the Hecke eigensheaf over a point p in BunSL(N), will determine,

for some holomorphic SL(N)-bundle on Σ that corresponds to the point p in the moduli

space BunSL(N) of all holomorphic SL(N)-bundles on Σ, the value of any n-point corre-

lation function
〈
Φλ1

s (z1) . . .Φ
λn
s (zn)

〉
of local bosonic operators in the holomorphic chiral

algebra of the twisted (0, 2) sigma-model on SL(N)/B. And the geometric Langlands

correspondence for our case of G = SL(N) just tells us that for every flat, holomorphic

PSL(N)-bundle that can be constructed over Σ, we have a unique way of characterising

how an n-point correlation function of local bosonic primary operators in the holomorphic

chiral algebra of a quasi-topological sigma-model with no boundaries like the twisted (0, 2)

sigma-model on SL(N)/B, will vary under the local SL(N)-transformations generated by

the affine Ja(z) currents on the worldsheet described earlier.

4.2 Hecke operators and the correlation functions of local operators

Consider the quantum operator J (z) = 1
(−n1−1)!...(−nm−1)! : ∂−n1−1

z Ja1(z) . . . ∂−nm−1
z

Jam(z) :. Note that since the Ja(z)’s are Q+-closed and in the Q+-cohomology or holomor-

phic chiral algebra of the sigma-model on SL(N)/B, so will J (z) or polynomials F (J (z))

of arbitrary positive degree in J (z) (modulo polynomials of arbitrary positive degree in the

S(si)(z) operators which necessarily act by zero and hence vanish in the quantum theory).15

The set of local operators described by F (J (z)) can be identified with the mathemat-

ically defined chiral vertex algebra V−h∨(g) associated to ĝ at the critical level k = −h∨,

where g = slN in our present case. The action of the Hecke operator on a Hecke eigensheaf

as defined in the axiomatic CFT sense, is equivalent to an insertion of an operator that

lies in the chiral vertex algebra given by m copies of V−h∨(g), i.e., ⊕mV−h∨(g) [6]. Such an

operator is again a polynomial operator of the form F (J (z)). In short, the action of the

Hecke operator is equivalent to inserting into the correlation functions of local primary field

operators of the twisted (0, 2) sigma-model on SL(N)/B, other local operators that also lie

in the holomorphic chiral algebra of the twisted (0, 2) sigma-model on SL(N)/B, which,

as emphasised earlier, is a quasi-topological sigma-model with no boundaries. This is to

be contrasted with the description of the Hecke operators (and Hecke eigensheaves) in the

gauge-theoretic approach to the geometric Langlands program, where they are interpreted

as ’t Hooft line operators (and D-branes) in a topological sigma-model with boundaries.

a structure of an Lg-oper on Σ. The space of connections of any such bundle only form a half-dimensional

subspace in the moduli stack LocLG of the space of all connections on a particular flat LG-bundle, where

G = SL(N). Thus, our construction establishes the geometric Langlands correspondence only partially.

However, it turns out that our construction can be generalised to include all flat LG-bundles on Σ by

considering in the correlation functions more general chiral operators that are labelled by finite-dimensional

representations of g, which, in mathematical terms, is equivalent to making manifest the singular oper

structure of any flat LG-bundle on Σ [6].
15In order to show this, first note that ∂zJ

a(z) = [L−1, J
a(z)], where L−1 =

H
dzTzz(z). Since

[Q+, J
a(z)] = 0 even at the quantum level, it will mean that [Q+, ∂zJ

a(z)] = [[Q+, L−1], J
a(z)] =H

dz′[[Q+, Tzz(z
′)], Ja(z)] =

H
dz′[∂z′(Rij̄∂z′φiψj̄), Ja(z)] = 0. One can proceed to repeat this argument

and show that [Q+, ∂
m
z J

a(z)] = 0 for any m ≥ 1 at the quantum level always.
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Our results therefore provide an alternative physical interpretation of these abstract ob-

jects of the geometric Langlands correspondence for G = SL(N), to that furnished in the

gauge-theoretic approach by Kapustin and Witten in [1].

A. The twisted (0, 2) sigma-model and sheaves of CDO’s

We shall review the relevant features of the twisted (0, 2) sigma-model considered by Witten

in [10] and its relation to the theory of CDO’s constructed by Malikov et al. in [11].

In our aim to keep this paper self-contained, we will present the relevant details in as

comprehensive and coherent a manner as possible. The interested reader is encouraged to

seek the original references for other details not covered in this appendix.

A.1 The sigma-model with (0, 2) supersymmetry

Let us first recall the two-dimensional non-linear sigma-model with (0, 2) supersymmetry on

a complex manifold X. It governs maps Φ : Σ → X, with Σ being the worldsheet Riemann

surface. By picking local coordinates z, z̄ on Σ, and φi, φī on X, the map Φ can then be

described locally via the functions φi(z, z̄) and φī(z, z̄). Let K be the anti-canonical bundle

of Σ (the bundle of one-forms of type (0, 1)), whereby the right-moving spinor bundle of Σ

is given K
1/2

. Let TX and TX be the holomorphic and anti-holomorphic tangent bundle

of X. The right-moving fermi fields consist of ψi and ψī, which are smooth sections of the

bundles K
1/2⊗Φ∗TX and K

1/2⊗Φ∗TX respectively. Here, ψi and ψī are superpartners of

the scalar fields φi and φī. Let g be the hermitian metric on X. The action is then given by

S =

∫

Σ
|d2z| 1

2
gij̄(∂zφ

i∂z̄φ
j̄ + ∂z̄φ

i∂zφ
j̄) + gij̄ψ

iDzψ
j̄ , (A.1)

whereby i, ī = 1 . . . , n = dimCX, |d2z| = idz ∧ dz̄. In addition, Dz is the ∂ operator on

K
1/2 ⊗φ∗TX using the pull-back of the Levi-Civita connection on TX. In formulas (using

a local trivialisation of K
1/2

), we have16

Dzψ
j̄ = ∂zψ

j̄ + Γj̄
l̄k̄
∂zφ

l̄ψk̄, (A.2)

where Γj̄
l̄k̄

is the affine connection of X.

The infinitesimal transformation of the fields generated by the supercharge Q+ under

the first right-moving supersymmetry, is given by

δφi = 0, δφī = ǭ−ψ
ī,

δψī = 0, δψi = −ǭ−∂z̄φ
i, (A.3)

while the infinitesimal transformation of the fields generated by the supercharge Q+ under

the second right-moving supersymmetry, is given by

δφi = ǫ−ψ
i, δψī = −ǫ−∂z̄φ

ī,

δψi = 0, δφī = 0. (A.4)

where (ǭ−)ǫ− are (anti-)holomorphic sections of K
−1/2

.

16Note that we have used a flat metric and hence vanishing spin connection on the Riemann surface Σ

in writing these formulas.
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A.2 Twisting the model

Classically, the action (A.1) and therefore the model that it describes, possesses a right-

moving R-symmetry, giving rise to a U(1)R global symmetry group. Denoting qR to be the

charge of the right-moving fermi fields under this symmetry group, we find that ψī and

ψi will have charge qR = ±1 respectively. Quantum mechanically however, this symmetry

is anomalous because of non-perturbative worldsheet instantons; the charge violations for

the right-moving global symmetry is given by ∆qR =
∫
Σ Φ∗c1(TX).

In order to define a twisted variant of the model, the spins of the fermi fields need to

be shifted by a multiple of their corresponding right-moving charge qR under the global

U(1)R symmetry group; by considering a shift in the spin S via S → S + 1
2 [(2s̄ − 1)qR]

(where s̄ is a real number), the fermi fields of the twisted model will transform as smooth

sections of the following bundles:

ψi ∈ Γ
(
K

(1−s̄) ⊗ Φ∗TX
)
, ψī ∈ Γ

(
K

s̄ ⊗ Φ∗TX
)
. (A.5)

Notice that for s = s̄ = 1
2 , the fermi fields transform as smooth sections of the same tensored

bundles defining the original (0, 2) sigma-model, i.e., we get back the untwisted model.

To make contact with the theory of CDO’s, we shall consider the case where s̄ = 0.

Then, the fermi fields of the twisted model will transform as smooth sections of the

following bundles:

ψi
z̄ ∈ Γ

(
K

1 ⊗ Φ∗TX
)
, ψī ∈ Γ

(
Φ∗TX

)
. (A.6)

Notice that we have included additional indices in the above fields so as to reflect their

new geometrical characteristics on Σ; the fermi field without a z̄ index transform as a

worldsheet scalar, while the fermi field with a z̄ index transform as a (0, 1)-form on the

worldsheet. In addition, as reflected by the i, and ī indices, all fields continue to be valued

in the pull-back of the corresponding bundles on X. Thus, the action of the twisted

variant of the (0, 2) sigma-model is given by

Stwist =

∫

Σ
|d2z| 1

2
gij̄(∂zφ

i∂z̄φ
j̄ + ∂z̄φ

i∂zφ
j̄) + gij̄ψ

i
z̄Dzψ

j̄ . (A.7)

A twisted theory is the same as an untwisted one when defined on a Σ which is flat.

Hence, locally (where one has the liberty to select a flat metric), the twisting does nothing

at all. However, what happens non-locally may be non-trivial. In particular, note that

globally, the supersymmetry parameters ǫ− and ǭ− must now be interpreted as sections

of different line bundles; in the twisted model, the transformation laws given by (A.3)

and (A.4) are still valid, and because of the shift in the spins of the various fields, we find

that for the laws to remain physically consistent, ǭ− must now be a function on Σ while ǫ−
must be a section of the non-trivial bundle K

−1
. One can therefore canonically pick ǭ− to

be a constant and ǫ− to vanish, i.e., the twisted variant of the (0, 2) sigma-model has just

one canonical global fermionic symmetry generated by the supercharge Q+. Hence, the

infinitesimal transformation of the (twisted) fields under this single canonical symmetry
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must read (after setting ǭ− to 1)

δφi = 0, δφī = ψī,

δψī = 0, δψi
z̄ = −∂z̄φ

i. (A.8)

From the (0, 2) supersymmetry algebra, we have Q
2
+ = 0. In addition, (after twisting) Q+

transforms as a scalar. Consequently, we find that the symmetry is nilpotent i.e., δ2 = 0

(off-shell), and behaves as a BRST-like symmetry.

Note at this point that the transformation laws of (A.8) can be expressed in terms of

the BRST operator Q+, whereby δW = {Q+,W} for any field W . One can then show that

the action (A.7) can be written as

Stwist =

∫

Σ
|d2z|

{
Q+, V

}
+ Stop (A.9)

where

V = −gij̄ψ
i
z̄∂zφ

j̄ , (A.10)

while

Stop =
1

2

∫

Σ
gij̄

(
∂zφ

i∂z̄φ
j̄ − ∂z̄φ

i∂zφ
j̄
)

(A.11)

is
∫
Σ Φ∗(K), the integral of the pull-back to Σ of the (1, 1)-form K = i

2gij̄dφ
i ∧ dφj̄ .

Notice that since Q
2
+ = 0, the first term on the r.h.s. of (A.9) is invariant under the

transformation generated by Q+. In addition, as mentioned in the introduction, we will

be studying the twisted model in perturbation theory, where one does an expansion in the

inverse of the large-radius limit. Hence, only the degree-zero maps of the term
∫
Σ Φ∗(K)

contribute to the path integral factor e−Stwist . Therefore, in the perturbative limit, one can

set
∫
Σ Φ∗(K) = 0, i.e., Stop can be set to zero. Thus, the action given in (A.9) is invariant

under the BRST symmetry as required. Moreover, for the transformation laws of (A.8) to

be physically consistent, Q+ must have charge qR = 1 under the global U(1)R gauge group.

Since V has a corresponding charge of qR = −1, Stwist in (A.9) continues to be invariant

under the U(1)R symmetry group at the classical level. In summary, the effective action

in perturbation theory reads

Spert =

∫

Σ
|d2z| gij̄

(
∂zφ

j̄∂z̄φ
i + ψi

z̄Dzψ
j̄
)
, (A.12)

where it can also written as

Spert =

∫

Σ
|d2z|

{
Q+, V

}
. (A.13)

Note that the original symmetries of the theory persist despite limiting ourselves to per-

turbation theory; even though Stop = 0, from (A.13), one finds that Spert is invariant under

the nilpotent BRST symmetry generated by Q+. It is also invariant under the U(1)R global

symmetry. Spert shall henceforth be the action of interest in all our subsequent discussions.
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A.3 Chiral algebras from the twisted sigma-model

The chiral algebra. Classically, the model is conformally invariant. The trace of the

stress tensor from Spert vanishes, i.e., Tzz̄ = 0. The other non-zero components of the stress

tensor, at the classical level, are given by

Tzz = gij̄∂zφ
i∂zφ

j̄ , (A.14)

and

Tz̄z̄ = gij̄∂z̄φ
i∂z̄φ

j̄ + gij̄ψ
i
z̄

(
∂z̄ψ

j̄ + Γj̄
l̄k̄
∂z̄φ

l̄ψk̄
)
. (A.15)

Furthermore, one can go on to show that

Tz̄z̄ =
{
Q+,−gij̄ψ

i
z̄∂z̄φ

j̄
}
, (A.16)

and

[
Q+, Tzz

]
= gij̄∂zφ

iDzψ
j̄

= 0 (on − shell). (A.17)

From (A.17) and (A.16), we see that all components of the stress tensor are Q+-invariant;

Tzz is an operator in the Q+-cohomology while Tz̄z̄ is Q+-exact and thus trivial in Q+-

cohomology. The fact that Tzz is not Q+-exact even at the classical level implies that

the twisted model is not a two-dimensional topological field theory; rather, it is a two-

dimensional conformal field theory. This because the original model has (0, 2) and not

(2, 2) supersymmetry. On the other hand, the fact that Tz̄z̄ is Q+-exact has some non-

trivial consequences on the nature of the local operators in the Q+-cohomology. Let us

discuss this further.

We say that a local operator O inserted at the origin has dimension (n,m) if under

a rescaling z → λz, z̄ → λ̄z (which is a conformal symmetry of the classical theory), it

transforms as ∂n+m/∂zn∂z̄m, that is, as λ−nλ̄−m. Classical local operators have dimensions

(n,m) where n and m are non-negative integers.17 However, only local operators with

m = 0 survive in Q+-cohomology. The reason for the last statement is that the rescaling

of z̄ is generated by L̄0 =
∮
dz̄ z̄Tz̄z̄. As we noted in the previous paragraph, Tz̄ z̄ is of

the form {Q+, . . . }, so L̄0 = {Q+, V0} for some V0. If O is to be admissible as a local

physical operator, it must at least be true that {Q+,O} = 0. Consequently, [L̄0,O] =

{Q+, {V0,O}}. Since the eigenvalue of L̄0 on O is m, we have [L̄0,O] = mO. Therefore, if

m 6= 0, it follows that O is Q+-exact and thus trivial in Q+-cohomology.

By a similar argument, we can show that O, as an element of the Q+-cohomology,

varies holomorphically with z. Indeed, since the momentum operator (which acts on O
as ∂z̄) is given by L̄−1, the term ∂z̄O will be given by the commutator [L̄−1,O]. Since

L̄−1 =
∮
dz̄ Tz̄z̄, we will have L̄−1 = {Q+, V−1} for some V−1. Hence, because O is physical

such that {Q+,O} = 0, it will be true that ∂z̄O = {Q+, {V−1,O}} and thus vanishes in

Q+-cohomology.

17Anomalous dimensions under RG flow may shift the values of n and m quantum mechanically, but the

spin given by (n−m), being an intrinsic property, remains unchanged.
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The observations that we have so far are based solely on classical grounds. The question

that one might then ask is whether these observations will continue to hold when we

eventually consider the quantum theory. The key point to note is that if it is true classically

that a cohomology vanishes, it should continue to do so in perturbation theory, when

quantum effects are small enough. Since the above observations were made based on the

classical fact that Tz̄z̄ vanishes inQ+-cohomology, they will continue to hold at the quantum

level. Let us look at the quantum theory more closely.

The quantum theory. Quantum mechanically, the conformal structure of the theory

is violated by a non-zero one-loop β-function; renormalisation adds to the classical action

Spert a term of the form:

∆1−loop = c1 Rij̄∂zφ
j̄ψi

z̄, (A.18)

for some divergent constants c1, where Rij̄ is the Ricci tensor of X. In the Calabi-Yau

case, one can choose a Ricci-flat metric such that ∆1−loop vanishes and the original action

is restored. In this case, the classical observations made above continue to hold true. On

the other hand, in the “massive models” where c1(X) 6= 0, there is no way to set ∆1−loop to

zero. Conformal invariance is necessarily lost, and there is nontrivial RG running. However,

one can continue to express Tz̄z̄ as {Q+, . . . }, i.e., it remains Q+-exact, and thus continues

to vanish in Q+-cohomology. Hence, the above observations about the holomorphic nature

of the local operators having dimension (n, 0) continue to hold in the quantum theory.

We would also like to bring to the reader’s attention another important feature of the

Q+-cohomology at the quantum level. Recall that classically, we had [Q+, Tzz] = 0 via the

classical equations of motion. Notice that the classical expression for Tzz is not modified

at the quantum level (at least up to one-loop), since even in the non-Calabi-Yau case, the

additional term of ∆1−loop in the quantum action does not contribute to Tzz. However,

due to one-loop corrections to the action of Q+, we have, at the quantum level

[
Q+, Tzz

]
= ∂z

(
Rij̄∂zφ

iψj̄
)
. (A.19)

Note that the term on the r.h.s. of (A.19) cannot be eliminated through the equations

of motion in the quantum theory. Neither can we modify Tzz (by subtracting a total

derivative term) such that it continues to be Q+-invariant. This implies that in a ‘massive’

model, operators do not remain in theQ+-cohomology after general holomorphic coordinate

transformations on the worldsheet, i.e., the model is not conformal at the level of the Q+-

cohomology.18 However, Tzz continues to be holomorphic in z up to Q+-trivial terms;

from the conservation of the stress tensor, we have ∂z̄Tzz = −∂zTzz̄, and Tzz̄, while no

longer zero, is now given by Tzz̄ = {Q+, Gzz̄} for some Gzz̄, i.e., ∂zTzz̄ continues to be

Q+-exact, and ∂z̄Tzz ∼ 0 in Q+-cohomology. The holomorphy of Tzz, together with the

relation (A.19), has further implications for the Q+-cohomology of local operators; by a

18In section 2 and section 3, we will examine more closely, from a different point of view, the one-loop

correction to the action of Q+ associated with the beta-function, where (A.19) will appear in a different

guise.
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Laurent expansion of Tzz,
19 one can use (A.19) to show that [Q+, L−1] = 0. This means

that operators remain in the Q+-cohomology after global translations on the worldsheet.

In addition, recall that Q+ is a scalar with spin zero in the twisted model. As shown few

paragraphs before, we have the condition L̄0 = 0. Let the spin be S, where S = L0 − L̄0.

Therefore, [Q+, S] = 0 implies that [Q+, L0] = 0. In other words, operators remain in the

Q+-cohomology after global dilatations of the worldsheet coordinates.

One can also make the following observations about the correlation functions of these

local operators. Firstly, note that
〈
{Q+,W}

〉
= 0 for any W , and recall that for any

local physical operator Oα, we have {Q+,Oα} = 0. Since the ∂z̄ operator on Σ is given

by L̄−1 =
∮
dz̄ Tz̄z̄, where Tz̄z̄ = {Q+, . . . }, we find that ∂z̄ 〈O1(z1)O2(z2) . . .Os(zs)〉

is given by
∮
dz̄
〈
{Q+, . . . } O1(z1)O2(z2) . . .Os(zs)

〉
=
∮
dz̄
〈
{Q+, · · ·

∏
i Oi(zi)}

〉
= 0.

Thus, the correlation functions are always holomorphic in z. Secondly, Tzz̄ = {Q+, Gzz̄}
for some Gzz̄ in the ‘massive’ models. Hence, the variation of the correlation functions

due to a change in the scale of Σ will be given by
〈
O1(z1)O2(z2) . . .Os(zs){Q+, Gzz̄}

〉
=〈

{Q+,
∏

i Oi(zi) ·Gzz̄}
〉

= 0. In other words, the correlation functions of local physical

operators will continue to be invariant under arbitrary scalings of Σ. Thus, the correlation

functions are always independent of the Kähler structure on Σ and depend only on its

complex structure.

A holomorphic chiral algebra A. Let O(z) and Õ(z′) be two Q+-closed operators

such that their product is Q+-closed as well. Now, consider their operator product

expansion or OPE:

O(z)Õ(z′) ∼
∑

k

fk(z − z′)Ok(z′), (A.20)

in which the explicit form of the coefficients fk must be such that the scaling dimensions

and U(1)R charges of the operators agree on both sides of the OPE. In general, fk is

not holomorphic in z. However, if we work modulo Q+-exact operators in passing to the

Q+-cohomology, the fk’s which are non-holomorphic and are thus not annihilated by ∂/∂z̄,

drop out from the OPE because they multiply operators Ok which are Q+-exact. This

is true because ∂/∂z̄ acts on the l.h.s. of (A.20) to give terms which are cohomologically

trivial.20 In other words, we can take the fk’s to be holomorphic coefficients in studying

the Q+-cohomology. Thus, the OPE of (A.20) has a holomorphic structure.

In summary, we have established that the Q+-cohomology of holomorphic local opera-

tors has a natural structure of a holomorphic chiral algebra (as defined in the mathematical

literature) which we shall henceforth call A; it is always preserved under global translations

and dilatations, though (unlike the usual physical notion of a chiral algebra) it may not be

preserved under general holomorphic coordinate transformations on the Riemann surface

Σ depending on whether c1(X) vanishes or not. Likewise, the OPEs of the chiral algebra of

local operators obey the usual relations of holomorphy, associativity, and invariance under

19Since we are working modulo Q+-trivial operators, it suffices for Tzz to be holomorphic up to Q+-trivial

terms before an expansion in terms Laurent coefficients is permitted.
20Since {Q+,O} = 0, we have ∂z̄O = {Q+, V (z)} for some V (z), as argued before. Hence ∂z̄O(z)· eO(z′) =

{Q+, V (z) eO(z′)}.
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translations and scalings of z, but not necessarily invariance under arbitrary holomorphic

reparameterisations of z. The local operators are of dimension (n,0) for n ≥ 0, and the

chiral algebra of such operators requires a flat metric up to scaling on Σ to be defined.

Therefore, the chiral algebra that we have obtained can either be globally-defined on a Σ

of genus-one, or locally-defined on an arbitrary but curved Σ. The sigma-model is also

plagued by anomalies of the form 1
2c1(Σ)c1(X) and 1

2p1(X), where p1(X) is the first Pon-

tryagin class of TX. However, for the flag manifolds X considered in this paper, p1(X)

vanishes. In addition, since the chiral algebra that we will be analysing depends only on a

local coordinate z on Σ, i.e., we will only be working locally on Σ, the first anomaly will

also be irrelevant in our context. Therefore, we shall henceforth have nothing more to say

about these anomalies. Last but not least, as is familiar for chiral algebras, the correlation

functions of these operators depend on Σ only via its complex structure. The correlation

functions are holomorphic in the parameters of the theory and are therefore protected from

perturbative corrections.

A.4 Local operators as perturbative observables

Local operators. In general, a local operator is an operator F that is a function of the

physical fields φi, φī, ψi
z̄, ψ

ī, and their derivatives with respect to z and z̄.21 However,

as we saw in section A.3, the Q+-cohomology vanishes for operators of dimension (n,m)

with m 6= 0. Since ψi
z̄ and the derivative ∂z̄ both have m = 1 (and recall from section A.3

that a physical operator cannot have negative m or n), Q+-cohomology classes can be

constructed from just φi, φī, ψī and their derivatives with respect to z. Note that the

equation of motion for ψī is Dzψ
ī = 0. Thus, we can ignore the z-derivatives of ψī,

since it can be expressed in terms of the other fields and their corresponding derivatives.

Therefore, a chiral (i.e. Q+-invariant) operator which represents a Q+-cohomology class is

given by F(φi, ∂zφ
i, ∂2

zφ
i, . . . ;φī, ∂zφ

ī, ∂2
zφ

ī, . . . ;ψī), where we have tried to indicate that

F might depend on z derivatives of φi and φī of arbitrarily high order, though not on

derivatives of ψī. If the scaling dimension of F is bounded, it will mean that F depends

only on the derivatives of fields up to some finite order or is a polynomial of bounded

degree in those. Notice that F will always be a polynomial of finite degree in ψī, simply

because ψī is fermionic and can only have a finite number of components before they vanish

due to their anticommutativity. However, the dependence of F on φi, φī (as opposed to

their derivatives) need not have any simple form. Nevertheless, we can make the following

observation - from the U(1)R charges of the fields listed in section A.2, we see that if F is

homogeneous of degree k in ψī, then it has U(1)R-charge qR = k.

A general qR = k operator F(φi, ∂zφ
i, . . . ;φī, ∂zφ

ī, . . . ;ψī) can be interpreted as a

(0, k)-form on X with values in a certain tensor product bundle. In order to illustrate

the general idea behind this interpretation, we will make things explicit for operators of

dimension (0, 0) and (1, 0). Similar arguments will likewise apply for operators of higher

dimension. For dimension (0, 0), the most general operator takes the form F(φi, φī;ψj̄) =

21Note here that since we are interested in local operators which define a holomorphic chiral algebra on

the Riemann surface Σ, we will work locally on Σ with local parameter z. Hence, we need not include in

our operators the dependence on the scalar curvature of Σ.
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fj̄1,...,j̄k
(φi, φī)ψj̄i . . . ψj̄k ; thus, F may depend on φi, and φī, but not on their derivatives,

and is kth order in ψj̄ . Mapping ψj̄ to dφj̄ (which one can do so as both ψj̄ and dφj̄

are anticommuting quantities), such an operator corresponds to an ordinary (0, k)-form

fj̄1,...,j̄k
(φi, φī)dφj̄1 . . . dφj̄k on X. For dimension (1, 0), there are two general cases. In

the first case, we have an operator F(φl, ∂zφ
i;φl̄;ψj̄) = fi,j̄1,...,j̄k

(φl, φl̄)∂zφ
iψj̄1 . . . ψj̄k that

is linear in ∂zφ
i and does not depend on any other derivatives. It is a (0, k)-form on

X with values in the bundle T ∗X; alternatively, it is a (1, k)-form on X. Similarly, in

the second case, we have an operator F(φl;φl̄, ∂zφ
s̄;ψj̄) = f i

j̄1,...,j̄k
(φl, φl̄)gis̄∂zφ

s̄ψj̄i . . . ψj̄k

that is linear in ∂zφ
s̄ and does not depend on any other derivatives. It is a (0, k)-form on

X with values in the bundle TX. In a similar fashion, for any integer n > 0, the operators

of dimension (n, 0) and charge qR = k can be interpreted as (0, k)-forms with values in a

certain bundle over X. This structure persists in quantum perturbation theory, but there

may be perturbative corrections to the complex structure of the bundle.

The quantum action of Q+. The action of Q+ on such operators can be easily

described at the classical level. If we interpret ψī as dφī, then Q+ acts on functions of

φi and φī, and is simply the ∂̄ operator on X. This follows from the transformation laws

δφī = ψī, δφi = 0, δψī = 0. The interpretation of Q+ as the ∂̄ operator will remain

valid when Q+ acts on a more general operator F(φi, ∂zφ
i, . . . ;φī, ∂zφ

ī, . . . ;ψī) that does

depend on the derivatives of φi and φī. The reason for this is because we have the equation

of motion Dzψ
ī = 0. This means that one can neglect the action of Q+ on derivatives

∂m
z φ

ī with m > 0.

Perturbatively however, there will be corrections to the action of Q+. In fact, as briefly

mentioned in section A.3 earlier, (A.19) provides such an example - the holomorphic stress

tensor Tzz, though not corrected at 1-loop, is no longer Q+-closed because the action of

Q+ has received perturbative corrections. The fact that Q+ does not always act as the

∂̄ operator at the quantum level suggests that one needs a more general framework than

just ordinary Dolbeault or ∂̄-cohomology to describe the Q+-cohomology of the twisted

(0, 2) sigma-model. Indeed, as we will show shortly, the appropriate description of the

Q+-cohomology of local operators spanning the chiral algebra will be given in terms of the

more abstract notion of Cech cohomology.

A.5 A sheaf of chiral algebras

We shall now explain the idea of a “sheaf of chiral algebras” on X. To this end, note that

both the Q+-cohomology of local operators (i.e., operators that are local on the Riemann

surface Σ), and the fermionic symmetry generator Q+, can be described locally on X.

Hence, one is free to restrict the local operators to be well-defined not throughout X, but

only on a given open set U ⊂ X. Since in perturbation theory, we are considering trivial

maps Φ : Σ → X with no multiplicities, an operator defined in an open set U will have

a sensible operator product expansion with another operator defined in U . From here,

one can naturally proceed to restrict the definition of the operators to smaller open sets,

such that a global definition of the operators can be obtained by gluing together the open

sets on their unions and intersections. From this description, in which one associates a
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chiral algebra, its OPEs, and chiral ring to every open set U ⊂ X, we get what is known

mathematically as a “sheaf of chiral algebras”. We shall call this sheaf Â.

Description of A via Cech cohomology. In perturbation theory, one can also describe

the Q+-cohomology classes by a form of Cech cohomology. This alternative description will

take us to the mathematical point of view on the subject [11, 32]. In essence, we will show

that the chiral algebra A of the Q+-cohomology classses of the twisted (0, 2) sigma-model

on X, can be represented, in perturbation theory, by the classes of the Cech cohomology of

the sheaf Â of locally-defined chiral operators. To this end, we shall demonstrate an isomor-

phism between the Q+-cohomology classes and the classes of the Cech cohomology of Â.

Let us start by considering an open set U ⊂ X that is isomorphic to a contractible

space such as an open ball in Cn, where n = dimC(X). Because U is a contractible

space, any bundle over U will be trivial. In the absence of perturbative corrections at the

classical level, any operator F in the Q+-cohomology will be classes of H0,k
∂̄

(U, F̂ ) on U

as explained earlier. Since F̂ will be a trivial bundle over U , which means that F̂ will

always possess a global section, i.e., it corresponds to a soft sheaf, and because the higher

Cech cohomologies of a soft sheaf are trivial [33], we will have Hk
Cech(U, F̂ ) = 0 for k > 0.

Mapping this back to Dolbeault cohomology via the Cech-Dolbeault isomorphism, we find

that H0,k
∂̄

(U, F̂ ) = 0 for k > 0. Note that small quantum corrections in the perturbative

limit can only annihilate cohomology classes and not create them. Hence, in perturbation

theory, it follows that the local operators F with positive values of qR, must vanish in

Q+-cohomology on U .

Now consider a good cover of X by open sets {Ua}. Since the intersection of open sets

{Ua} also give open sets (isomorphic to open balls in Cn), {Ua} and all of their intersections

have the same property as U described above: ∂̄-cohomology and hence Q+-cohomology

vanishes for positive values of qR on {Ua} and their intersections.

Let the operator F1 on X be a Q+-cohomology class with qR = 1. It is here that we

shall import the usual arguments relating a ∂̄ and Cech cohomology, to demonstrate an

isomorphism between the Q+-cohomology and a Cech cohomology. When restricted to an

open set Ua, the operator F1 must be trivial in Q+-cohomology, i.e., F1 = {Q+, Ca}, where

Ca is an operator of qR = 0 that is well-defined in Ua.

Now, since Q+-cohomology classes such as F1 can be globally-defined on X, we have

F1 = {Q+, Ca} = {Q+, Cb} over the intersection Ua ∩ Ub, so {Q+, Ca − Cb} = 0. Let

Cab = Ca −Cb. For each a and b, Cab is defined in Ua ∩Ub. Therefore, for all a, b, c, we have

Cab = −Cba, Cab + Cbc + Cca = 0. (A.21)

Moreover, for (qR = 0) operators Ka and Kb, whereby {Q+,Ka} = {Q+,Kb} = 0, we have

an equivalence relation

Cab ∼ C′
ab = Cab + Ka −Kb. (A.22)

Note that the collection {Cab} are operators in the Q+-cohomology with well-defined op-

erator product expansions.

Since the local operators with positive values of qR vanish in Q+-cohomology on an

arbitrary open set U , the sheaf Â of the chiral algebra of operators has for its local sections
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the ψī-independent (i.e. qR = 0) operators F̂(φi, ∂zφ
i, . . . ;φī, ∂zφ

ī, . . . ) that are annihilated

by Q+. Each Cab with qR = 0 is thus a section of Â over the intersection Ua ∩ Ub.

From (A.21) and (A.22), we find that the collection {Cab} defines the elements of the first

Cech cohomology group H1
Cech(X, Â).

Next, note that the Q+-cohomology classes are defined as those operators which are

Q+-closed, modulo those which can be globally written as {Q+, . . . } on X. In other words,

F1 vanishes in Q+-cohomology if we can write it as F1 = {Q+, Ca} = {Q+, Cb} = {Q+, C},
i.e., Ca = Cb and hence Cab = 0. Therefore, a vanishing Q+-cohomology with qR = 1

corresponds to a vanishing first Cech cohomology. Thus, we have obtained a map between

the Q+-cohomology with qR = 1 and a first Cech cohomology. Similar to the case of

relating a ∂̄ and Cech cohomology, one can also run everything backwards and construct

an inverse of this map [10]. Since there is nothing unique about the qR = 1 case, we can

repeat the above procedure for operators with qR > 1. In doing so, we find that the Q+-

cohomology coincides with the Cech cohomology of Â for all qR. Hence, the chiral algebra

A of the twisted (0, 2) sigma-model will be given by
⊕

qR
HqR

Cech(X, Â) as a vector space.

As there will be no ambiguity, we shall henceforth omit the label “Cech” when referring to

the cohomology of Â.

Note that in the mathematical literature, the sheaf Â, also known as a sheaf of vertex

algebras, is studied purely from the Cech viewpoint; the field ψī is omitted and locally on

X, one considers operators constructed only from φi, φī and their z-derivatives. The chiral

algebra A of Q+-cohomology classes with positive qR are correspondingly constructed as

Cech qR-cocycles. However, in the physical description via a Lagrangian and Q+ operator,

the sheaf Â and its cohomology are given a ∂̄-like description, where Cech qR-cycles are

represented by operators that are qthR order in the field ψī. Notice that the mathematical

description does not involve any form of perturbation theory at all. Instead, it utilises the

abstraction of Cech cohomology to define the spectrum of operators in the quantum sigma-

model. It is in this sense that the study of the sigma-model is given a rigorous foundation

in the mathematical literature.

A.6 Relation to a free βγ system

Now, we shall express in a physical language a few key points that are made in the math-

ematical literature [32] starting from a Cech viewpoint. Let us start by providing a con-

venient description of the local structure of the sheaf Â. To this end, we will describe in a

new way the Q+-cohomology of operators that are regular in a small open set U ⊂ X. We

assume that U is isomorphic to an open ball in Cn and is thus contractible.

Notice from Spert in (A.13) and V in (A.10), that the hermitian metric on X only

appears inside a term of the form {Q+, . . . } in the action. Thus, any shift in the metrics

will also appear inside Q+-exact (i.e. Q+-trivial) terms. Consequently, for our present

purposes, we can arbitrarily redefine the value of the hermitian metric on X, since it does

not affect the analysis of the Q+-cohomology. Therefore, to describe the local structure,

we can pick a hermitian metric that is flat when restricted to U . Thus, the local action
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(derived from the flat hermitian metric) of the twisted (0, 2) sigma-model on U is

I =
1

2π

∫

Σ
|d2z|

∑

i,j̄

δij̄

(
∂zφ

j̄∂z̄φ
i + ψi

z̄∂zψ
j̄
)
. (A.23)

Now let us describe the Q+-cohomology classes of operators regular in U . As explained

earlier, these are operators of dimension (n, 0) that are independent of ψī. In general, such

operators are of the form F̂(φi, ∂zφ
i, . . . ;φī, ∂zφ

ī, . . . ). Recall that Q+ will act as the ∂̄

operator at the classical level. Because perturbative corrections to the action of Q+ can

be ignored on a flat open set U [10], on the classes of operators in U , Q+ will continue

to act as ∂̄ = ψī∂/∂φī, and the condition that F̂ is annihilated by Q+ is precisely that,

as a function of φi, φī, and their z-derivatives, it is independent of φī (as opposed to its

derivatives), and depends only on the other variables, namely φi, and the derivatives of φi

and φī.22 Hence, the Q+-invariant operators are of the form F̂(φi, ∂zφ
i, . . . ; ∂zφ

ī, ∂2
zφ

ī, . . . ).

In other words, the operators, in their dependence on the center of mass coordinate of the

string whose worldsheet theory is the twisted (0, 2) sigma-model, is holomorphic. The local

sections of Â are just given by the operators in the Q+-cohomology of the local, twisted

(0, 2) sigma-model with action (A.23).

Let us set βi = δij̄∂zφ
j̄ and γi = φi, whereby βi and γi are bosonic operators

of dimension (1, 0) and (0, 0) respectively. Then, the Q+-cohomology of operators reg-

ular in U can be represented by arbitrary local functions of β and γ of the form

F̂(γ, ∂zγ, ∂
2
zγ, . . . , β, ∂zβ, ∂

2
zβ, . . . ). The operators β and γ have the operator products

of a standard βγ system. The products β · β and γ · γ are non-singular, while

βi(z)γ
j(z′) = − δij

z − z′
+ regular. (A.24)

These statements can be deduced from the flat action (A.23) by standard field-theoretic

methods. We can write down an action for the fields β and γ, regarded as free elementary

fields, which reproduces these OPE’s. It is simply the following action of a βγ system:

Iβγ =
1

2π

∫
|d2z|

∑

i

βi∂z̄γ
i. (A.25)

Hence, we find that the local βγ system above reproduces the Q+-cohomology of ψī-

independent operators of the sigma-model on U , i.e., the local sections of the sheaf Â.

At this juncture, one can make another important observation concerning the rela-

tionship between the local twisted (0, 2) sigma-model with action (A.23) and the local

version of the βγ system of (A.25). To begin with, note that the holomorphic stress tensor

T̂ (z) = −2πTzz of the local sigma-model is given by

T̂ (z) = −δij̄∂zφ
j̄∂zφ

i. (A.26)

22We can again ignore the action of Q+ on z-derivatives of φī because of the equation of motion ∂zψ
ī = 0

and the symmetry transformation law δφī = ψī.
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(Here and below, normal ordering is understood for T̂ (z)). Via the respective identification

of the fields β and γ with ∂zφ and φ, we find that T̂ (z) can be written in terms of the β

and γ fields as

T̂ (z) = −βi∂zγ
i. (A.27)

T̂ (z), as given by (A.27), coincides with the holomorphic stress tensor of the local βγ

system. Simply put, the twisted (0, 2) sigma-model and the βγ system have the same local

holomorphic stress tensor. This means that locally on X, the sigma-model and the βγ

system have the same generators of general holomorphic coordinate transformations on

the worldsheet.

One may now ask the following question: does the βγ system reproduce the Q+-

cohomology of ψī-independent operators globally onX, or only in a small open set U? Well,

the βγ system will certainly reproduce the Q+-cohomology of ψī-independent operators

globally on X if there is no obstruction to defining the system globally on X, i.e., one

finds, after making global sense of the action (A.25), that the corresponding theory remains

anomaly-free. Let’s look at this more closely.

First and foremost, the classical action (A.25) makes sense globally if we interpret

the bosonic fields β, γ correctly. γ defines a map γ : Σ → X, and β is a (1, 0)-form on

Σ with values in the pull-back γ∗(T ∗X). With this interpretation, (A.25) becomes the

action of what one might call a non-linear βγ system. However, by choosing γi to be local

coordinates on a small open set U ⊂ X, one can make the action linear. In other words, a

local version of (A.25) represents the action of a linear βγ system.

Now that we have made global sense of the action of the βγ system at the classical

level, we move on to discuss what happens at the quantum level. The anomalies that enter

in the twisted (0, 2) sigma model also appear in the nonlinear βγ system as follows. Expand

around a classical solution of the nonlinear βγ system, represented by a holomorphic map

γ0 : Σ → X. Setting γ = γ0 + γ′, the action, expanded to quadratic order about this

solution, is (1/2π) (β,Dγ′). γ′, being a deformation of the coordinate γ0 on X, is a

section of the pull-back γ∗0(TX). Thus, the kinetic operator of the β and γ fields is the

D operator on sections of γ∗0(TX); it is the complex conjugate of the D operator of the

fermion kinetic term of the twisted sigma-model action Spert that results in its observed

anomalies. Complex conjugation reverses the sign of the anomalies, but here the fields

are bosonic, while in the twisted sigma-model, they are fermionic; this gives a second

sign change.23 Hence, the non-linear βγ system has exactly the same anomalies as the

underlying twisted (0, 2) sigma-model. And if the anomalies vanish, the βγ system will

reproduce the Q+-cohomology of ψī-independent operators globally on X. In other words,

one can find a global section of Â in such a case.

However, note that the βγ system lacks the presence of right-moving fermions and thus

the U(1)R charge qR carried by the fields ψi
z̄ and ψī of the underlying twisted (0, 2) sigma-

model. Locally, the Q+-cohomology of the sigma model is non-vanishing only for qR = 0.

23Notice that the D operator in Spert acts on sections of the pull-back of the anti-holomorphic bundle

TX instead of the holomorphic bundle TX. However, this difference is irrelevant with regard to anomalies

since p1(TX) = p1(TX).
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Globally however, there can generically be cohomology in higher degrees. Since the chiral

algebra of operators furnished by the linear βγ system gives the correct description of the

Q+-cohomology of ψī-independent operators on U , one can then expect the globally-defined

chiral algebra of operators furnished by the non-linear βγ system to correctly describe the

Q+-cohomology classes of zero degree (i.e. qR = 0) on X. How then can one use the non-

linear βγ system to describe the higher cohomology? The answer lies in the analysis carried

out in the section A.5. In the βγ description, we do not have a close analog of ∂̄ cohomology

at our convenience. Nevertheless, we can use the more abstract notion of Cech cohomology.

As before, we begin with a good cover of X by small open sets {Ua}, and, as explained in

section A.5, we can then describe the Q+-cohomology classes of positive degree (i.e. qR > 0)

by Cech qR-cocycles, i.e., they can be described by the qthR Cech cohomology of the sheaf Â
of the chiral algebra of the linear βγ system with action being a linearised version of (A.25).

Although unusual from a physicist’s perspective, this Cech cohomology approach has been

taken as a starting point for the present subject in the mathematical literature [11, 32].

A.7 Local symmetries, gluing the free βγ systems, and the sheaf of CDO’s

Conserved currents and local symmetries. So far, we have obtained an understand-

ing of the local structure of the Q+-cohomology. We shall now proceed towards our real

objective of obtaining an understanding of its global structure, since after all, the sigma-

model is defined on all of X, and not just some open set U . In order to do, we will

need to glue the local descriptions that we have studied above together, so that we will

appropriately have a globally-defined βγ system and its chiral algebra at our disposal.

To this end, we must first cover X by small open sets {Ua}. Recall here that in

each Ua, the Q+-cohomology is described by the chiral algebra of local operators of a free

βγ system on Ua. Next, we will need to glue these local descriptions together over the

intersections {Ua ∩ Ub}, so as to describe the global structure of the Q+-cohomology in

terms of a globally-defined sheaf of chiral algebras over the entire manifold X.

Note that the gluing has to be carried out using the automorphisms of the free βγ

system. Thus, one must first ascertain the underlying symmetries of the system, which

are in turn divided into geometrical and non-geometrical symmetries. The geometrical

symmetries are used in gluing together the local sets {Ua} into the entire manifold X. The

non-geometrical symmetries on the other hand, are used in gluing the local descriptions at

the algebraic level.

As usual, the generators of these symmetries will be given by the charges of the con-

served currents of the free βγ system. Since the conserved charges must also be conformally-

invariant, it will mean that they must be given by an integral of a dimension one current,

modulo total derivatives. The dimension one currents of the free βγ system can be con-

structed as follows.

Let us describe the currents which are associated with the geometrical symmetries

first. Firstly, if we have a holomorphic vector field V on X where V = V i(γ) ∂
∂γi , we can

construct a dimension one current JV = −V iβi. The corresponding conserved charge is

then given by KV =
∮
JV dz. A computation of the operator product expansion with the
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elementary fields γ gives

JV (z)γk(z′) ∼ V k(z′)

z − z′
. (A.28)

Under the symmetry transformation generated by KV , we have δγk = iǫ[KV , γ
k], where ǫ

is a infinitesinal transformation parameter. Thus, we see from (A.28) that KV generates

the infinitesimal diffeomorphism δγk = iǫV k of U . In other words, KV generates the

holomorphic diffeomorphisms of the target space X. For finite diffeomorphisms, we will

have a coordinate transformation γ̃k = gk(γ), where each gk(γ) is a holomorphic function

in the γks. Since we are using the symmetries of the βγ system to glue the local descriptions

over the intersections {Ua ∩ Ub}, on an arbitrary intersection Ua ∩ Ub, γ
k and γ̃k must be

defined in Ua and Ub respectively.

We shall now determine the current associated with the non-geometrical symmetries.

The charge of the current should not generate any transformations on the γi’s at all since

these fields have a geometrical interpretation as the coordinates on X. In other words, the

current must be constructed out of the γi’s and their derivatives only. Thus, a suitable

dimension one current would be given by JB = Bi(γ)∂zγ
i, where the Bi(γ)’s are just

holomorphic functions in the γi’s. The conserved charge is then given by KB =
∮
JBdz.

As explained in [10], the Bi(γ)’s must be the components of an arbitrary holomorphic

(1, 0)-form B =
∑

iBi(γ)dγ
i on X that is non-exact, i.e., for every non-vanishing KB ,

there is a (2, 0)-form C = ∂B, that is ∂-closed (since ∂2 = 0). Thus, C corresponds to a

sheaf Ω2,cl
X of ∂-closed (2, 0)-forms on X, which is related via the first Cech cohomology

group H1(X,Ω2,cl
X ) to the moduli of the chiral algebra of the sigma-model [10, 11]. This

point will be important in our forthcoming paper, where we will investigate the physical

interpretation of a “quantum” geometric Langlands correspondence in a similar context,

albeit with fluxes that correspond to the moduli of the chiral algebra turned on.

Local field transformations and gluing the free βγ systems. Let us now describe

how the different fields of the free βγ system on any U will transform under the geometrical

and non-geometrical symmetries generated by KV and KB respectively. Via a computation

of the relevant OPEs, we have

γ̃i = gi(γ), (A.29)

β̃i = βkD
k
i + ∂zγ

jEij, (A.30)

where i, j, k = 1, 2, . . . , N = dimCX. Here, D and E are N × N matrices such that

[D]T = [∂g]−1 and [E] = [∂B], that is, [(DT )−1]i
k = ∂ig

k and [E]ij = ∂iBj.

Note that in order to consistently glue a pair of free βγ systems in any overlap region

Ua∩Ub, one will need to use the relations in (A.29)–(A.30) to glue their free fields together.

As required, (A.29)–(A.30) defines an automorphism of the free βγ system - the γ̃i and β̃i

fields produce the correct OPE’s amongst themselves.

A sheaf of CDO’s. Last but not least, note that (A.29)–(A.30) actually define the

automorphism relations of a sheaf Ôch
X of Chiral Differential Operators or CDO’s on X [11].

In other words, Â ≃ Ôch
X . Hence, the Q+-cohomology and therefore the holomorphic chiral
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algebra A of the twisted (0, 2) sigma-model will be given by
⊕

qR
HqR(X, Ôch

X ) - the sum

of all Cech cohomology groups of the sheaf of CDO’s on X, as a vector space.
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[13] J. Balog, L. Fehér, P. Forgács, L. O’Raifeartaigh and A. Wipf, Liouville and Toda theories as

conformally reduced WZNW theories, Phys. Lett. B 227 (1989) 214.

[14] J. Balog, L. Fehér, L. O’Raifeartaigh, P. Forgács and A. Wipf, Toda theory and W-algebra
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